Ignition delay times and methane species time-histories were measured for methane/O2 mixtures in a high CO2 diluted environment using shock tube and laser absorption spectroscopy. The experiments were performed between 1300 K and 2000 K at pressures between 6 and 31 atm. The test mixtures were at an equivalence ratio of 1 with CH4 mole fractions ranging from 3.5% to 5% and up to 85% CO2 with a bath of argon gas as necessary. The ignition delay times and methane time histories were measured using pressure, emission, and laser diagnostics. Predictive ability of two literature kinetic mechanisms (gri 3.0 and aramco mech 1.3) was tested against current data. In general, both mechanisms performed reasonably well against measured ignition delay time data. The methane time-histories showed good agreement with the mechanisms for most of the conditions measured. A correlation for ignition delay time was created taking into account the different parameters showing the ignition activation energy for the fuel to be 49.64 kcal/mol. Through a sensitivity analysis, CO2 is shown to slow the overall reaction rate and increase the ignition delay time. To the best of our knowledge, we present the first shock tube data during ignition of methane/CO2/O2 under these conditions. Current data provides crucial validation data needed for the development of future kinetic mechanisms.

References

References
1.
Pires
,
J.
,
Martins
,
F.
,
Alvim-Ferraz
,
M.
, and
Simões
,
M.
,
2011
, “
Recent Developments on Carbon Capture and Storage: An Overview
,”
Chem. Eng. Res. Des.
,
89
(
9
), pp.
1446
1460
.
2.
Dostal
,
V.
,
Hejzlar
,
P.
, and
Driscoll
,
M. J.
,
2006
, “
The Supercritical Carbon Dioxide Power Cycle: Comparison to Other Advanced Power Cycles
,”
Nucl. Technol.
,
154
(
3
), pp.
283
301
.
3.
Gibbins
,
J.
, and
Chalmers
,
H.
,
2008
, “
Carbon Capture and Storage
,”
Energy Policy
,
36
(
12
), pp.
4317
4322
.
4.
McClung
,
A.
,
Brun
,
K.
, and
Chordia
,
L.
, 2014, “
Technical and Economic Evaluation of Supercritical Oxy-Combustion for Power Generation
,” 4th International Symposium—Supercritical CO2 Power Cycles, Pittsburgh, PA, Sept. 9–10, Paper No.
40
.
5.
Allam
,
R.
,
Fetvedt
,
J.
,
Forrest
,
B.
, and
Freed
,
D.
,
2014
, “
The Oxy-Fuel, Supercritical CO2 Allam Cycle: New Cycle Developments to Produce Even Lower-Cost Electricity From Fossil Fuels Without Atmospheric Emissions
,”
ASME
Paper No. GT2014-26952.
6.
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
,
Moriarty
,
N. W.
,
Eiteneer
,
B.
,
Goldenberg
,
M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Song
,
S.
, and
Gardiner
,
W. C.
, Jr.
,
1999
, “
GRI-Mech 3.0
,” Gas Research Institute, Chicago, IL, accessed Mar. 24, 2017, http://combustion.berkeley.edu/gri-mech/
7.
Barari
,
G.
,
Koroglu
,
B.
,
Masunov
,
A. E.
, and
Vasu
,
S.
,
2016
, “
Products and Pathways of Aldehydes Oxidation in the Negative Temperature Coefficient Region
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
012203
.
8.
Metcalfe
,
W. K.
,
Burke
,
S. M.
,
Ahmed
,
S. S.
, and
Curran
,
H. J.
,
2013
, “
A Hierarchical and Comparative Kinetic Modeling Study of C1–C2 Hydrocarbon and Oxygenated Fuels
,”
Int. J. Chem. Kinet.
,
45
(
10
), pp.
638
675
.
9.
Reactiondesign
,
2013
, “
CHEMKIN-PRO 15131
,” Reaction Design, San Diego, CA.
10.
Davidson
,
D. F.
, and
Hanson
,
R. K.
,
2004
, “
Interpreting Shock Tube Ignition Data
,”
Int. J. Chem. Kinet.
,
36
(
9
), p.
510
.
11.
Moghaddas
,
A.
,
Bennett
,
C.
,
Eisazadeh-Far
,
K.
, and
Metghalchi
,
H.
,
2012
, “
Measurement of Laminar Burning Speeds and Determination of Onset of Auto-Ignition of Jet-A/Air and Jet Propellant-8/Air Mixtures in a Constant Volume Spherical Chamber
,”
ASME J. Energy Resour. Technol.
,
134
(
2
), p.
022205
.
12.
Nicolas
,
G.
, and
Metghalchi
,
H.
,
2015
, “
Comparison Between RCCE and Shock Tube Ignition Delay Times at Low Temperatures
,”
ASME J. Energy Resour. Technol.
,
137
(
6
), p.
062203
.
13.
Konnov
,
A. A.
, and
Dyakov
,
I. V.
,
2005
, “
Measurement of Propagation Speeds in Adiabatic Cellular Premixed Flames of CH4 + O2 + CO2
,”
Exp. Therm. Fluid Sci.
,
29
(
8
), pp.
901
907
.
14.
de Persis
,
S.
,
Foucher
,
F.
,
Pillier
,
L.
,
Osorio
,
V.
, and
Gökalp
,
I.
,
2013
, “
Effects of O2 Enrichment and CO2 Dilution on Laminar Methane Flames
,”
Energy
,
55
, pp.
1055
1066
.
15.
de Persis
,
S.
,
Cabot
,
G.
,
Pillier
,
L.
,
Goükalp
,
I.
, and
Boukhalfa
,
A. M.
,
2013
, “
Study of Lean Premixed Methane Combustion With CO2 Dilution Under Gas Turbine Conditions
,”
Energy Fuels
,
27
(
2
), pp.
1093
1103
.
16.
Mazas
,
A.
,
Lacoste
,
D. A.
, and
Schuller
,
T.
,
2010
, “
Experimental and Numerical Investigation on the Laminar Flame Speed of CH4/O2 Mixtures Diluted With CO2 and H2O
,”
ASME
Paper No. GT2010-22512.
17.
Almansour
,
B.
,
Thompson
,
L.
,
Lopez
,
J.
,
Barari
,
G.
, and
Vasu
,
S. S.
,
2016
, “
Laser Ignition and Flame Speed Measurements in Oxy-Methane Mixtures Diluted With CO2
,”
ASME J. Energy Resour. Technol.
,
138
(
3
), p.
032201
.
18.
Heil
,
P.
,
Toporov
,
D.
,
Förster
,
M.
, and
Kneer
,
R.
,
2011
, “
Experimental Investigation on the Effect of O2 and CO2 on Burning Rates During Oxyfuel Combustion of Methane
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
3407
3413
.
19.
Liu
,
F.
,
Guo
,
H.
, and
Smallwood
,
G. J.
,
2003
, “
The Chemical Effect of CO2 Replacement of N2 in Air on the Burning Velocity of CH4 and H2 Premixed Flames
,”
Combust. Flame
,
133
(
4
), pp.
495
497
.
20.
Vasu
,
S. S.
,
Davidson
,
D. F.
, and
Hanson
,
R. K.
,
2011
, “
Shock Tube Study of Syngas Ignition in Rich CO2 Mixtures and Determination of the Rate of H + O2 + CO2 → HO2 + CO2
,”
Energy Fuels
,
25
(
3
), pp.
990
997
.
21.
Koroglu
,
B.
,
Pryor
,
O.
,
Lopez
,
J.
,
Nash
,
L.
, and
Vasu
,
S. S.
,
2016
, “
Shock Tube Ignition Delay Times and Methane Time-Histories Measurements During Excess CO2 Diluted Oxy-Methane Combustion
,”
Combust. Flame
,
164
, pp.
152
163
.
22.
Pryor
,
O. M.
,
Barak
,
S.
,
Koroglu
,
B.
,
Ninnemann
,
E.
, and
Vasu
,
S. S.
,
2017
, “
Measurements and Interpretation of Shock Tube Ignition Delay Times in Highly CO2 Diluted Mixtures Using Multiple Diagnostics
,”
Combust. Flame
180
, pp. 63–76.
23.
Koroglu
,
B.
, and
Vasu
,
S. S.
,
2016
, “
Measurements of Propanal Ignition Delay Times and Species Time Histories Using Shock Tube and Laser Absorption
,”
Int. J. Chem. Kinet.
,
48
(
11
), pp.
679
690
.
24.
Mark
,
H.
,
1958
, “
The Interaction of a Reflected Shock Wave With the Boundary Layer in a Shock Tube
,” National Advisory Committee for Aeronautics, Ithaca, NY.
25.
Yamashita
,
H.
,
Kasahara
,
J.
,
Sugiyama
,
Y.
, and
Matsuo
,
A.
,
2012
, “
Visualization Study of Ignition Modes Behind Bifurcated-Reflected Shock Waves
,”
Combust. Flame
,
159
(
9
), pp.
2954
2966
.
26.
Ihme
,
M.
,
Sun
,
Y.
, and
Deiterding
,
R.
,
2013
, “
Detailed Simulations of Shock-Bifurcation and Ignition of an Argon-Diluted Hydrogen/Oxygen Mixture in a Shock Tube
,”
AIAA
Paper No. 2013-0538.
27.
Kleine
,
H.
,
Lyakhov
,
V.
,
Gvozdeva
,
L.
, and
Grönig
,
H.
,
1992
, “
Bifurcation of a Reflected Shock Wave in a Shock Tube
,”
Shock Waves
,
Springer
, Berlin, pp.
261
266
.
28.
Nowak
,
A. J.
,
Lamnaouer
,
M.
,
Kassab
,
A.
,
Divo
,
E.
,
Polley
,
N.
,
Garza-Urquiza
,
R.
, and
Petersen
,
E.
,
2014
, “
A Conjugate Axisymmetric Model of a High-Pressure Shock-Tube Facility
,”
Int. J. Numer. Methods Heat Fluid Flow
,
24
(
4
), pp.
873
890
.
29.
Vasu
,
S. S.
,
Davidson
,
D. F.
, and
Hanson
,
R. K.
,
2010
, “
Shock-Tube Experiments and Kinetic Modeling of Toluene Ignition
,”
J. Propul. Power
,
26
(
4
), pp.
776
783
.
30.
Vasu
,
S. S.
,
Davidson
,
D. F.
, and
Hanson
,
R. K.
,
2008
, “
Jet Fuel Ignition Delay Times: Shock Tube Experiments Over Wide Conditions and Surrogate Model Predictions
,”
Combust. Flame
,
152
(
1–2
), p.
125
.
31.
Glassman
,
I.
, and
Yetter
,
R. A.
,
2008
,
Combustion
,
4th ed.
,
Academic Press
,
Burlington, MA
.
32.
Sabia
,
P.
,
Lavadera
,
M. L.
,
Sorrentino
,
G.
,
Giudicianni
,
P.
,
Ragucci
,
R.
, and
de Joannon
,
M.
,
2016
, “
H2O and CO2 Dilution in MILD Combustion of Simple Hydrocarbons
,”
Flow Turbul. Combust.
,
96
(
2
), pp.
433
448
.
33.
Holton
,
M.
,
Gokulakrishnan
,
P.
,
Klassen
,
M.
,
Roby
,
R.
, and
Jackson
,
G.
,
2010
, “
Autoignition Delay Time Measurements of Methane, Ethane, and Propane Pure Fuels and Methane-Based Fuel Blends
,”
ASME J. Eng. Gas Turbines Power
,
132
(
9
), p.
091502
.
You do not currently have access to this content.