This paper explores the feasibility of using Syngas with low methane number as fuel for commercial turbocharged internal combustion engines. The effect of methane number (MN), compression ratio (CR), and intake pressure on auto-ignition tendency in spark ignition internal combustion engines was determined. A nondimensional model of the engine was performed by using kinetics mechanisms of 98 chemical species in order to simulate the combustion of the gaseous fuels produced from different thermochemical processes. An error function, which combines the Livengood–Wu with ignition delay time correlation, to estimate the knock occurrence crank angle (KOCA) was proposed. The results showed that the KOCA decreases significantly as the MN increases. Results also showed that Syngas obtained from coal gasification is not a suitable fuel for engines because auto-ignition takes place near the beginning of the combustion phase, but it could be used in internal combustion engines with reactivity controlled compression ignition (RCCI) technology. For the case of high compression ratio and a high inlet pressure at the engine's manifold, fuels with high MN are suitable for the operating conditions proposed.

References

References
1.
Rostrup-Nielsen
,
J.
, and
Christiansen
,
L.
,
2011
,
Concepts in Syngas Manufacture
(Catalytic Science Series),
Imperial College Press
,
London
.
2.
Hou
,
J.
,
Wen
,
Z.
,
Liu
,
J.
, and
Jiang
,
Z.
,
2015
, “
Study on Knock Characteristics of Dimethyl Ether Fueled Homogenous Charge Compression Ignition-Direct Injection Combustion Engines
,”
ASME J. Energy Resour. Technol.
,
137
(
6
), p.
062202
.
3.
Movahed
,
M. M.
,
Tabrizi
,
H. B.
, and
Mirsalim
,
S. M. A.
,
2016
, “
Normalized Knock Intensity Determination Based on the Knock Sensor Analysis to Have a Fixed Detection Threshold at Different Operating Conditions
,”
ASME J. Eng. Gas Turbines Power
,
138
(
6
), p.
061501
.
4.
Malenshek
,
M.
, and
Olsen
,
D.
,
2009
, “
Methane Number Testing of Alternative Gaseous Fuels
,”
Fuel
,
88
(
4
), pp.
650
656
.
5.
Ferguson
,
C.
,
1986
,
Internal Combustion Engines: Applied Thermosciences
,
Wiley
, New York.
6.
Hernandez
,
J. J.
,
Serrano
,
C.
, and
Perez
,
J.
,
2006
, “
Prediction of the Autoignition Delay Time of Producer Gas From Biomass Gasification
,”
Energy Fuels
,
20
(
2
), pp.
532
539
.
7.
Nicolas
,
G.
, and
Metghalchi
,
H.
,
2015
, “
Comparison Between RCCE and Shock Tube Ignition Delay Times at Low Temperatures
,”
ASME J. Energy Resour. Technol.
,
137
(
6
), p.
062203
.
8.
Arunachalam
,
A.
, and
Olsen
,
D.
,
2012
, “
Experimental Evaluation of Knock Characteristics of Producer Gas
,”
Biomass Bioenergy
,
37
, pp.
169
176
.
9.
Rao
,
S. G.
,
2003
, “
Experiments and Modelling Studies of Producer Gas Based Spark-Ignited Reciprocating Engines
,”
Ph.D. thesis
, Indian Institute of Science, Karnataka, India.
10.
Forero
,
J. D.
,
Diaz
,
G. A.
,
Garcia
,
J.
,
Sanjuan
,
M.
, and
Corredor
,
L.
,
2013
, “
Application of Mechanisms for the Control of Autoignition in High Power Internal Combustion Engine Fueled With Natural Gas
,”
ASME
Paper No. ES2013-18023.
11.
Shrestha
,
S. B.
, and
Karim
,
G. A.
,
2006
, “
The Operational Mixture Limits in Engines Fueled With Alternative Gaseous Fuels
,”
ASME J. Energy Resour. Technol.
,
128
(
3
), pp.
223
228
.
12.
Duarte
,
J.
,
Garcia
,
J.
,
Jiménez
,
J.
,
Sanjuan
,
M. E.
,
Bula
,
A.
, and
González
,
J.
,
2017
, “
Auto-Ignition Control in Spark-Ignition Engines Using Internal Model Control Structure
,”
ASME J. Energy Resour. Technol.
,
139
(
2
), p.
022201
.
13.
Badr
,
O.
,
Elsayed
,
N.
, and
Karim
,
G.
,
1996
, “
An Investigation of the Lean Operational Limits of Gas-Fueled Spark Ignition Engines
,”
ASME J. Energy Resour. Technol.
,
118
(
2
), pp.
159
163
.
14.
Zhen
,
X.
,
Wang
,
Y.
,
Xu
,
S.
,
Zhu
,
Y.
,
Tao
,
C.
,
Xu
,
T.
, and
Song
,
M.
,
2012
, “
The Engine Knock Analysis—An Overview
,”
Appl. Energy
,
92
, pp.
628
636
.
15.
Rahmouni
,
C.
,
Brecq
,
G.
,
Tazerout
,
M.
, and
Le Corre
,
O.
,
2004
, “
Knock Rating of Gaseous Fuels in a Single Cylinder Spark Ignition Engine
,”
Fuel
,
83
(
3
), pp.
327
336
.
16.
Hudson
,
C.
,
Gao
,
X.
, and
Stone
,
R.
,
2001
, “
Knock Measurement for Fuel Evaluation in Spark Ignition Engines
,”
Fuel
,
80
(
3
), pp.
395
407
.
17.
Livengood
,
J.
, and
Wu
,
P.
,
1955
, “
Correlation of Autoignition Phenomena in Internal Combustion Engines and Rapid Compression Machines
,”
Symp. Combust.
,
5
(
1
), pp.
347
356
.
18.
Narayanan
,
G.
, and
Shrestha
,
S. B.
,
2009
, “
A Simulation Model of a Four-Stroke Spark Ignition Engine Fueled With Landfill Gases and Hydrogen Mixtures
,”
ASME J. Energy Resour. Technol.
,
131
(
3
), p.
032203
.
19.
McAllister
,
S.
,
Chen
,
J.
, and
Fernandez-Pello
,
A.
,
2011
,
Fundamentals of Combustion Processes
(Mechanical Engineering Series),
Springer
,
New York
.
20.
Dinler
,
N.
, and
Yucel
,
N.
,
2010
, “
Combustion Simulation in a Spark Ignition Engine Cylinder: Effects of Air–Fuel Ratio on the Combustion Duration
,”
Therm. Sci.
,
14
(
4
), pp.
1001
1012
.
21.
Sridhar
,
G.
,
Paul
,
P.
, and
Mukunda
,
H.
,
2004
, “
Simulation of Fluid Flow in a High Compression Ratio Reciprocating Internal Combustion Engine
,”
Proc. Inst. Mech. Eng., Part A
,
218
(
6
), pp.
403
416
.
22.
Heywood
,
J.
,
1988
, Internal Combustion Engine Fundamentals, McGraw-Hill Education, New York.
23.
Lounici
,
M.
,
Loubar
,
K.
,
Balistrou
,
M.
, and
Tazerout
,
M.
,
2011
, “
Investigation on Heat Transfer Evaluation for a More Efficient Two-Zone Combustion Model in the Case of Natural Gas SI Engines
,”
Appl. Therm. Eng.
,
31
(
2
), pp.
319
328
.
24.
Hoyermann
,
K.
,
Mauß
,
F.
, and
Zeuch
,
T.
,
2004
, “
A Detailed Chemical Reaction Mechanism for the Oxidation of Hydrocarbons and Its Application to the Analysis of Benzene Formation in Fuel-Rich Premixed Laminar Acetylene and Propene Flames
,”
Phys. Chem. Chem. Phys.
,
6
(
14
), pp.
3824
3835
.
25.
Rousseau
,
S.
,
Lemoult
,
B.
, and
Tazerout
,
M.
,
1999
, “
Combustion Characterization of Natural Gas in a Lean Burn Spark-Ignition Engine
,”
Proc. Inst. Mech. Eng., Part D
,
213
(
5
), pp.
481
489
.
26.
Soylu
,
S.
,
2005
, “
Prediction of Knock Limited Operating Conditions of a Natural Gas Engine
,”
Energy Convers. Manage.
,
46
(
1
), pp.
121
138
.
27.
Gersen
,
S.
,
Anikin
,
N.
,
Mokhov
,
A.
, and
Levinsky
,
H.
,
2008
, “
Ignition Properties of Methane/Hydrogen Mixtures in a Rapid Compression Machine
,”
Int. J. Hydrogen Energy
,
33
(
7
), pp.
1957
1964
.
28.
Soylu
,
S.
, and
Van Gerpen
,
J.
,
2003
, “
Development of an Autoignition Submodel for Natural Gas Engines
,”
Fuel
,
82
(
14
), pp.
1699
1707
.
29.
Petersen
,
E. L.
,
Kalitan
,
D. M.
,
Barrett
,
A. B.
,
Reehal
,
S. C.
,
Mertens
,
J. D.
,
Beerer
,
D. J.
,
Hack
,
R. L.
, and
McDonell
, V
. G.
,
2007
, “
New Syngas/Air Ignition Data at Lower Temperature and Elevated Pressure and Comparison to Current Kinetics Models
,”
Combust. Flame
,
149
(
1
), pp.
244
247
.
30.
Saikaly
,
K.
,
Rousseau
,
S.
,
Rahmouni
,
C.
,
Le Corre
,
O.
, and
Truffet
,
L.
,
2008
, “
Safe Operating Conditions Determination for Stationary SI Gas Engines
,”
Fuel Process. Technol.
,
89
(
11
), pp.
1169
1179
.
You do not currently have access to this content.