This manuscript presents experimental results on the reduction of sulfur oxide emissions from combustion of a high-sulfur content pulverized bituminous coal (Illinois #6 Macoupin) using a dry sorbent injection method. The coal particles were in the size range of 90–125 μm and were blended with calcium-, sodium-, potassium-, and magnesium-containing powdered sorbents at different proportions. The alkali/sulfur molar ratios were chosen to correspond to stoichiometric proportions (Ca/S = 1, Mg/S = 1, Na2/S = 1, and K2/S = 1) and the effectiveness of each alkali or alkali earth based sorbent was evaluated separately. Combustion of coal took place in a drop-tube furnace, electrically heated to 1400 K under fuel-lean conditions. The evolution of combustion effluent gases, such as NOx, SO2, and CO2 was monitored and compared among the different sorbent cases. The use of these sorbents helps to resolve the potential of different alkali metals for effective in-furnace sulfur oxide capture and possible NOx reduction. It also assesses the effectiveness of various chemical compounds of the alkalis, such as oxides, carbonates, peroxides, and acetates. Reductions in SO2 emissions were in the range of 5–72%, with sodium being the most effective metal followed by potassium, calcium, and then magnesium. Acetates were effective as dual SO2 and NOx reduction agents.

References

References
1.
IEA
,
1974–2014
, “
Emissions Reduction Through Upgrade of Coal-Fired Power Plants
,” International Energy Agency, Paris, France, accessed Jan. 25, 2017, http://www.iea.org/publications/freepublications/publication/partnercountryseriesemissionsreductionthroughupgradeofcoalfiredpowerplants. pdf
2.
IEA
,
2015
, “
U.S. Electricity Generation by Energy Source
,” International Energy Agency, Paris, France, accessed Jan. 25, 2017, https://www.eia.gov/tools/faqs/faq.cfm?id=427&t=3
3.
EPA
,
2012
, “
Today in Energy
,” U.S. Environmental Protection Agency, Washington, DC, accessed Jan. 25, 2017, https://www.eia.gov/todayinenergy/detail.php?id=10151
4.
EPA
,
2014
, “
Emissions Reductions
,” U.S. Environmental Protection Agency, Washington, DC, accessed Jan. 25, 2017, https://www3.epa.gov/airmarkets/progress/reports/emissions_reductions_so2.html#figure5
5.
EPA
,
1970–2014
, “
Clean Air Act Overview
,” U.S. Environmental Protection Agency, Washington, DC, accessed Jan. 25, 2017, https://www.epa.gov/clean-air-act-overview/progress-cleaning-air-and-improving-peoples-health
6.
EPA
, 2003, “
Air Pollution Control Technology Fact Sheet-EPA-452/F-03-034
,” U.S. Environmental Protection Agency, Washington, DC, accessed Jan. 25, 2017, https://www3.epa.gov/ttncatc1/dir1/ffdg.pdf
7.
Joseph
,
G. T.
, and
Beachler
,
D. S.
,
1998
, “
Scrubber Systems Operation Review
,” North Carolina State University, Raleigh, NC, APTI Course SI: 412C.
8.
Cole
,
J.
,
Kramlich
,
J.
,
Seeker
,
W.
,
Silcox
,
G.
,
Newton
,
G.
,
Harrison
,
D.
, and
Pershing
,
D.
,
1986
, “
Fundamental Studies of Sorbent Reactivity in Isothermal Reactors
,” Joint Symposium on Dry SO2 and NOx, Raleigh, NC, EPRI report CS-4966.
9.
Levendis
,
Y. A.
,
Zhu
,
W.
,
Wise
,
D. L.
, and
Simons
,
G. A.
,
1993
, “
Effectiveness of Calcium Magnesium Acetate as an SOx Sorbent in Coal Combustion
,”
AIChE J.
,
39
(
5
), pp.
761
773
.
10.
Steciak
,
J.
,
Levendis
,
Y. A.
, and
Wise
,
D. L.
,
1995
, “
Effectiveness of Calcium Magnesium Acetate as Dual SO2–NOx Emission Control Agent
,”
AIChE J.
,
41
(
3
), pp.
712
722
.
11.
Bruce
,
K. R.
,
Gullett
,
B. K.
, and
Beach
,
L. O.
,
1989
, “
Comparative SO2 Reactivity of CaO Derived From CaCO3 and Ca (OH)2
,”
AIChE J.
,
35
(
1
), pp.
37
41
.
12.
Simons
,
G.
,
1988
, “
Parameters Limiting Sulfation by CaO
,”
AIChE J.
,
34
(
1
), pp.
167
170
.
13.
Greene
,
S.
,
Chen
,
S.
,
Clark
,
W.
,
Heap
,
M.
, and
Pershing
,
D.
,
1985
, “
Bench-Scale Process Evaluation of Reburning and Sorbent Injection for in-Furnace NOx/SOx Reduction
,” Energy and Environmental Research Corp., Irvine, CA, Report No. PB-85-185890/XAB.
14.
Steciak
,
J.
,
Zhu
,
W.
,
Levendis
,
Y.
, and
Wise
,
D.
,
1994
, “
The Effectiveness of Calcium (Magnesium) Acetate and Calcium Benzoate as NOx Reduction Agents in Coal Combustion
,”
Combust. Sci. Technol.
,
102
(
1–6
), pp.
193
211
.
15.
Muzio
,
L.
, and
Often
,
G.
,
1987
, “
Assessment of Dry Sorbent Emission Control Technologies—Part I: Fundamental Processes
,”
JAPCA
,
37
(
5
), pp.
642
654
.
16.
Often
,
G.
,
McElroy
,
M.
, and
Muzio
,
L.
,
1987
, “
Assessment of Dry Sorbenf Emission Control Technologies—Part II: Applications
,”
JAPCA
,
37
(
8
), pp.
968
980
.
17.
Patsias
,
A.
,
Nimmo
,
W.
,
Gibbs
,
B.
, and
Williams
,
P.
,
2005
, “
Calcium-Based Sorbents for Simultaneous NOx/SOx Reduction in a Down-Fired Furnace
,”
Fuel
,
84
(
14
), pp.
1864
1873
.
18.
Nimmo
,
W.
,
Patsias
,
A.
,
Hall
,
W.
, and
Williams
,
P.
,
2005
, “
Characterization of a Process for the In-Furnace Reduction of NOx, SO2, and HCl by Carboxylic Salts of Calcium
,”
Ind. Eng. Chem. Res.
,
44
(
12
), pp.
4484
4494
.
19.
Shearer
,
J.
,
Smith
,
G.
,
Myles
,
K.
, and
Johnson
,
I.
,
1980
, “
Hydration Enhanced Sulfation of Limestone and Dolomite in the Fluidized-Bed Combustion of Coal
,”
J. Air Pollut. Control Assoc.
,
30
(
6
), pp.
684
688
.
20.
Ghosh-Dastidar
,
A.
,
Mahuli
,
S. K.
,
Agnihotri
,
R.
, and
Fan
,
L.-S.
,
1996
, “
Investigation of High-Reactivity Calcium Carbonate Sorbent for Enhanced SO2 Capture
,”
Ind. Eng. Chem. Res.
,
35
(
2
), pp.
598
606
.
21.
Wolf
,
K. J.
,
Smeda
,
A.
,
Müller
,
M.
, and
Hilpert
,
K.
,
2005
, “
Investigations on the Influence of Additives for SO2 Reduction During High Alkaline Biomass Combustion
,”
Energy Fuels
,
19
(
3
), pp.
820
824
.
22.
Sotirchos
,
S. V.
, and
Smith
,
A. R.
,
2004
, “
Performance of Porous CaO Obtained From the Decomposition of Calcium-Enriched Bio-Oil as Sorbent for SO2 and H2S Removal
,”
Ind. Eng. Chem. Res.
,
43
(
6
), pp.
1340
1348
.
23.
Kong
,
Y.
, and
Davidson
,
H.
,
2010
, “
Dry Sorbent Injection of Sodium Sorbents for SO2, HCl and Mercury Mitigation
,”
ASME
Paper No. NAWTEC18-3560.
24.
Yelverton
,
T. L.
,
Nash
,
D. G.
,
Brown
,
J. E.
,
Singer
,
C. F.
,
Ryan
,
J. V.
, and
Kariher
,
P. H.
,
2016
, “
Dry Sorbent Injection of Trona to Control Acid Gases From a Pilot-Scale Coal-Fired Combustion Facility
,”
Aims Environ. Sci.
,
3
(
1
), pp.
45
57
.
25.
Zygarlicke
,
C. J.
,
Stomberg
,
A. L.
,
Folkedahl
,
B. C.
, and
Strege
,
J. R.
,
2006
, “
Alkali Influences on Sulfur Capture for North Dakota Lignite Combustion
,”
Fuel Process. Technol.
,
87
(
10
), pp.
855
861
.
26.
Walawska
,
B.
,
Szymanek
,
A.
,
Pajdak
,
A.
, and
Nowak
,
M.
,
2014
, “
Flue Gas Desulfurization by Mechanically and Thermally Activated Sodium Bicarbonate
,”
Pol. J. Chem. Technol.
,
16
(
3
), pp.
56
62
.
27.
Keener
,
T. C.
, and
Davis
,
W. T.
,
1984
, “
Study of the Reaction of SO2 With NaHCO3 and Na2CO3
,”
J. Air Pollut. Control Assoc.
,
34
(
6
), pp.
651
654
.
28.
Makansi
,
J.
,
1985
, “
Understand System Effects When Evaluating Sorbent Injection
,”
Power
,
129
(
6
), pp.
35
39
.
29.
Jozewicz
,
W.
,
Chang
,
J. C.
,
Sedman
,
C. B.
, and
Brna
,
T. G.
,
1988
, “
Silica-Enhanced Sorbents for Dry Injection Removal of SO2 From Flue Gas
,”
JAPCA
,
38
(
8
), pp.
1027
1034
.
30.
Ryu
,
H.-J.
,
Grace
,
J. R.
, and
Lim
,
C. J.
,
2006
, “
Simultaneous CO2/SO2 Capture Characteristics of Three Limestones in a Fluidized-Bed Reactor
,”
Energy Fuels
,
20
(
4
), pp.
1621
1628
.
31.
Ghorishi
,
S. B.
,
Singer
,
C. F.
,
Jozewicz
,
W. S.
,
Sedman
,
C. B.
, and
Srivastava
,
R. K.
,
2002
, “
Simultaneous Control of Hg0, SO2, and NOx by Novel Oxidized Calcium-Based Sorbents
,”
J. Air Waste Manage. Assoc.
,
52
(
3
), pp.
273
278
.
32.
Li
,
T.
,
Zhuo
,
Y.
,
Lei
,
J.
, and
Xu
,
X.
,
2007
, “
Simultaneous Removal of SO2 and NO by Low Cost Sorbent-Catalysts Prepared by Lime, Fly Ash and Industrial Waste Materials
,”
Korean J. Chem. Eng.
,
24
(
6
), pp.
1113
1117
.
33.
Zhang
,
H.
,
Tong
,
H.
,
Wang
,
S.
,
Zhuo
,
Y.
,
Chen
,
C.
, and
Xu
,
X.
,
2006
, “
Simultaneous Removal of SO2 and NO From Flue Gas With Calcium-Based Sorbent at Low Temperature
,”
Ind. Eng. Chem. Res.
,
45
(
18
), pp.
6099
6103
.
34.
Lee
,
S. J.
,
Jung
,
S. Y.
,
Lee
,
S. C.
,
Jun
,
H. K.
,
Ryu
,
C. K.
, and
Kim
,
J. C.
,
2009
, “
SO2 Removal and Regeneration of MgO-Based Sorbents Promoted With Titanium Oxide
,”
Ind. Eng. Chem. Res.
,
48
(
5
), pp.
2691
2696
.
35.
Manovic
,
V.
, and
Anthony
,
E. J.
,
2007
, “
SO2 Retention by Reactivated CaO-Based Sorbent From Multiple CO2 Capture Cycles
,”
Environ. Sci. Technol.
,
41
(
12
), pp.
4435
4440
.
36.
Agnihotri
,
R.
,
Chauk
,
S. S.
,
Mahuli
,
S.
, and
Fan
,
L.-S.
,
1999
, “
Sorbent/Ash Reactivation for Enhanced SO2 Capture Using a Novel Carbonation Technique
,”
Ind. Eng. Chem. Res.
,
38
(
3
), pp.
812
819
.
37.
Lang
,
T.
,
Jensen
,
P. A.
, and
Knudsen
,
J. N.
,
2006
, “
The Effects of Ca-Based Sorbents on Sulfur Retention in Bottom ash From Grate-Fired Annual Biomass
,”
Energy Fuels
,
20
(
2
), pp.
796
806
.
38.
Kocaefe
,
D.
,
Karman
,
D.
, and
Steward
,
F.
,
1985
, “
Comparison of the Sulfation Rates of Calcium, Magnesium and Zinc Oxides With SO2 and SO3
,”
Can. J. Chem. Eng.
,
63
(
6
), pp.
971
977
.
39.
Rokni
,
E.
,
Panahi
,
A.
,
Ren
,
X.
, and
Levendis
,
Y. A.
,
2016
, “
Reduction of Sulfur Dioxide Emissions by Burning Coal Blends
,”
ASME J. Energy Resour. Technol.
,
138
(
3
), p.
032204
.
40.
Rokni
,
E.
,
Panahi
,
A.
,
Ren
,
X.
, and
Levendis
,
Y. A.
,
2016
, “
Curtailing the Generation of Sulfur Dioxide and Nitrogen Oxide Emissions by Blending and Oxy-Combustion of Coals
,”
Fuel
,
181
, pp.
772
784
.
41.
Sathyaraj
,
S.
, and
Gollahalli
,
S.
,
1991
, “
A Laboratory-Scale Study of Sulfur Dioxide Emission From Combustion of Pulverized Coal Blends
,”
Emerging Energy Technology
,
24
(
4
), pp. 7–14.
42.
Kopparthi
,
V.
, and
Gollahalli
,
S.
,
1995
, “
Nitric Oxide Emission From Pulverized Coal Blend Flames
,”
ASME J. Energy Resour. Technol.
,
117
(
3
), pp.
228
233
.
43.
Rokni
,
E.
, and
Levendis
,
Y. A.
,
2016
, “
Utilization of a High-Alkali Lignite Coal Ash for SO2 Capture in Power Generation
,”
J. Energy Eng.
, p.
04016067
(epub).
44.
Kazanc
,
F.
,
Khatami
,
R.
,
Manoel Crnkovic
,
P.
, and
Levendis
,
Y. A.
,
2011
, “
Emissions of NOx and SO2 From Coals of Various Ranks, Bagasse, and Coal-Bagasse Blends Burning in O2/N2 and O2/CO2 Environments
,”
Energy Fuels
,
25
(
7
), pp.
2850
2861
.
45.
LoüFfler
,
G.
,
Andahazy
,
D.
,
Wartha
,
C.
,
Winter
,
F.
, and
Hofbauer
,
H.
,
2001
, “
NOx and N2O Formation Mechanisms—A Detailed Chemical Kinetic Modeling Study on a Single Fuel Particle in a Laboratory-Scale Fluidized Bed
,”
ASME J. Energy Resour. Technol.
,
123
(
3
), pp.
228
235
.
46.
Wartha
,
C.
,
Winter
,
F.
, and
Hofbauer
,
H.
,
2000
, “
The Trade-Off Between N2, NO, and N2O Under Fluidized Bed Combustor Conditions
,”
ASME J. Energy Resour. Technol.
,
122
(
2
), pp.
94
100
.
47.
Flagan
,
R. C.
, and
Seinfeld
,
J. H.
,
1988
,
Fundamentals of Air Pollution Engineering
,
Prentice Hall
,
Englewood Cliffs, NJ
.
48.
Weisweiler
,
W.
, and
Roy
,
G. K.
,
1981
, “
Kinetics of Lime-Limestone Sulfation: Review of Lime Reactivity and Sulfation Kinetics in the Dry Limestone Desulfurization Processes
,”
Combust. Flame
,
74
(
1
), pp.
107
110
.
49.
Reid
,
W. T.
,
1970
, “
Basic Factors in the Capture of Sulfur Dioxide by Limestone and Dolomite
,”
J. Eng. Power
,
92
(
1
), pp.
11
15
.
50.
Simons
,
G. A.
,
Parker
,
T. E.
, and
Morency
,
J. R.
,
1988
, “
The Oxygen Reaction Order of SO2 With CaO
,”
Combust. Flame
,
74
(
1
), pp.
107
110
.
51.
Steciak
,
J.
,
Levendis
,
Y. A.
,
Wise
,
D. L.
, and
Simons
,
G. A.
,
1995
, “
Dual SO2-NOx Concentration Reduction by Calcium Salts of Carboxylic Acids
,”
J. Environ. Eng.
,
121
(
8
), pp.
595
604
.
You do not currently have access to this content.