In this work, parametric analysis of ejector expansion refrigeration cycles (EERC) with two different types of ejectors (constant area (CA) ejector and constant pressure (CP) ejector) is performed, and comparison of the results is presented. Effects of variation in operational parameters (condenser temperature, evaporator temperature, and cooling capacity) on coefficient of performance (COP), entrainment ratio (w), and pressure lift factor (Plf) are investigated. The range of variation for evaporator temperature, condenser temperature, and cooling capacity are −5 to 15 °C, 50–70 °C, and 10–80 kW, respectively. The ejector refrigeration cycle is simulated by ees software. The obtained results are validated by the experimental data available in the literature. The refrigerant R134a is selected based on the merit of its environmental and performance characteristics. The results show that the effect of evaporator temperature is much higher than that of condenser temperature on Plf. In contrast, the influence of condenser temperature on COP is much stronger than that of evaporator temperature. It is seen that COP and Plf of ejector expansion refrigeration cycle with constant pressure ejector (CP-EERC) are higher than those of refrigeration cycle with constant area ejector.

References

References
1.
Lucas
,
L.
,
1998
, “
IIR News
,”
Int. J. Refrig.
,
21
(
2
), pp.
87
88
.
2.
Tashtoush
,
B.
,
Alshare
,
A.
, and
Al-Rifai
,
S.
,
2015
, “
Performance Study of Ejector Cooling Cycle at Critical Mode Under Superheated Primary Flow
,”
Energy Convers. Manage.
,
94
, pp.
300
310
.
3.
Zhang
,
N.
,
Lior
,
N.
, and
Han
,
W.
,
2016
, “
Performance Study and Energy Saving Process Analysis of Hybrid Absorption-Compression Refrigeration Cycles
,”
ASME J. Energy Resour. Technol.
,
138
(
6
), p.
061603
.
4.
Hassanain
,
M.
,
Elgendy
,
E.
, and
Fatouh
,
M.
,
2015
, “
Ejector Expansion Refrigeration System: Ejector Design and Performance Evaluation
,”
Int. J. Refrig.
,
58
, pp.
1
13
.
5.
Gurulingam
,
S.
,
Kalaisselvane
,
A.
, and
Alagumurthy
,
N.
,
2012
, “
Performance Improvement of Forced Draught Jet Ejector Using Constant Rate Momentum Change Method
,”
Int. J. Eng. Adv. Technol.
,
2
(1), pp.
149
153
.
6.
Kowalski
,
G. J.
, and
Zenouzi
,
M.
,
2006
, “
Selection of Distributed Power-Generating Systems Based on Electric, Heating, and Cooling Loads
,”
ASME J. Energy Resour. Technol.
,
128
(
3
), pp.
168
178
.
7.
El-Dessouky
,
H.
,
Ettouney
,
H.
,
Alatiqi
,
I.
, and
Al-Nuwaibit
,
G.
,
2002
, “
Evaluation of Steam Jet Ejectors
,”
Chem. Eng. Prog.
,
41
(
6
), pp.
551
561
.
8.
Dutton
,
J. C.
, and
Carroll
,
B. F.
,
1983
, “
Optimized Ejector-Diffuser Design Procedure for Natural Gas Vapor Recovery
,”
ASME J. Energy Resour. Technol.
,
105
(
3
), pp.
388
393
.
9.
Roy
,
R. P.
,
Ratisher
,
M.
, and
Gokhale
,
V. K.
,
2001
, “
A Computational Model of a Power Plant Steam Condenser
,”
ASME J. Energy Resour. Technol.
,
123
(
1
), pp.
81
91
.
10.
Kim
,
H. D.
,
Lee
,
J. H.
,
Setoguchi
,
T.
, and
Matsuo
,
S.
,
2006
, “
Computational Analysis of a Variable Ejector Flow
,”
J. Therm. Sci.
,
15
(
2
), pp.
140
148
.
11.
Hamut
,
H. S.
,
Dincer
,
I.
, and
Naterer
,
G. F.
,
2014
, “
Experimental and Theoretical Efficiency Investigation of Hybrid Electric Vehicle Battery Thermal Management Systems
,”
ASME J. Energy Resour. Technol.
,
136
(
1
), p.
011202
.
12.
Ludwig
,
E. E.
,
1977
,
Applied Process Design for Chemical and Petrochemical Plants
,
2nd ed.
,
Gulf Publishing
,
Houston, TX
.
13.
Power
,
R. B.
,
1964
, “Steam–Jet Air Ejectors,”
Hydrocarbon Process.
,
43
, pp.
138
145
.
14.
El-Dessouky
,
H. T.
, and
Ettouney
,
H. M.
,
1999
, “
Single Effect Thermal Vapor Compression Desalination Process: Thermal Analysis
,”
Heat Transfer Eng.
,
20
(2), pp.
52
68
.
15.
Munday
,
J. T.
, and
Bagster
,
D. F.
,
1977
, “
A New Ejector Theory Applied to Steam Jet Refrigeration
,”
Ind. Eng. Chem. Process. Res. Dev.
,
16
(
4
), pp.
442
449
.
16.
Henzler
,
H. J.
,
1983
, “
Design of Ejectors for Single-Phase Material Systems
,”
Ger. Chem. Eng.
,
6
(5), pp.
292
300
.
17.
Keenan
,
J. H.
, and
Neumann
,
E. P.
,
1942
, “
A Simple Air Ejector
,”
ASME J. Appl. Mech.
,
9
(2), pp. 75–81.
18.
Li
,
D.
, and
Groll
,
E. A.
,
2005
, “
Transcritical CO2 Refrigeration Cycle With Ejector-Expansion Device
,”
Int. J. Refrig.
,
28
(
5
), pp.
766
773
.
19.
Sun
,
D. W.
, and
Eames
,
I. W.
,
1995
, “
Recent Developments in the Design Theories and Applications of Ejectors—A Review
,”
J. Inst. Energy
,
68
, pp.
65
79
.
20.
Sun
,
D.
, and
Eames
,
I.
,
1996
, “
Performance Characteristics of HCFC-123 Ejector Refrigeration Cycles
,”
Int. J. Energy Res.
,
20
(
10
), pp.
871
885
.
21.
Huang
,
B. J.
,
Chang
,
J. M.
,
Wang
,
C. P.
, and
Petrenko
,
V. A.
,
1999
, “
A 1-D Analysis of Ejector Performance
,”
Int. J. Refrig.
,
22
(
5
), pp.
354
364
.
22.
Keenan
,
J. H.
,
Neumann
,
E. P.
, and
Lustwerk
,
F.
,
1950
, “
An Investigation of Ejector Design by Analysis and Experiment
,”
ASME J. Appl. Mech.
,
72
, pp.
299
309
.
23.
Ouzzane
,
M.
, and
Aidoun
,
Z.
,
2003
, “
Model Development and Numerical Procedure for Detailed Ejector Analysis and Design
,”
Appl. Therm. Eng.
,
23
(
18
), pp.
2337
2351
.
24.
Kornhauser
,
A. A.
,
1990
, “
The Use of an Ejector as a Refrigerant Expander
,”
USNC/IIR
-
Purdue Refrigeration Conference
, West Lafayette, IN, July 17–20, pp.
10
19
.
25.
Harrell
,
G. S.
, and
Kornhauser
,
A. A.
,
1995
, “
Performance Tests of a Two-Phase Ejector
,”
30th Intersociety Energy Conversion Engineering Conference
, Orlando, FL, July 30–Aug. 5, pp.
49
53
.
26.
Menegay
,
P.
, and
Kornhauser
,
A. A.
,
1996
, “
Improvements to the Ejector Expansion Refrigeration Cycle
,”
31th Intersociety Energy Conversion Engineering Conference
(
IECEC
), Washington, DC, Aug. 11–16, pp.
702
706
.
27.
Domanski
,
P. A.
,
1995
, “
Theoretical Evaluation of the Vapor Compression Cycle With a Liquid-Line/Suction-Line Heat Exchanger, Economizer, and Ejector
,” National Institute of Standards and Technology, Report No.
NISTIR-5606
.
28.
Nakagawa
,
M.
, and
Takeuchi
,
H.
,
1998
, “
Performance of Two-Phase Ejector in Refrigeration Cycle
,”
Third International Conference on Multiphase Flow
, Lyon, France, June 8–12, pp.
1
8
.
29.
Disawas
,
S.
, and
Wongwises
,
S.
,
2004
, “
Experimental Investigation on the Performance of the Refrigeration Cycle Using a Two-Phase Ejector as an Expansion Device
,”
Int. J. Refrig.
,
27
(
6
), pp.
587
594
.
30.
Wongwises
,
S.
, and
Disawas
,
S.
,
2005
, “
Performance of the Two-Phase Ejector Expansion Refrigeration Cycle
,”
Int. J. Heat Mass Transfer
,
48
(19–20), pp.
4282
4286
.
31.
Chaiwongsa
,
P.
, and
Wongwises
,
S.
,
2007
, “
Effect of Throat Diameters of the Ejector on the Performance of the Refrigeration Cycle Using a Two-Phase Ejector as an Expansion Device
,”
Int. J. Refrig.
,
30
(
4
), pp.
601
608
.
32.
Chaiwongsa
,
P.
, and
Wongwises
,
S.
,
2008
, “
Experimental Study on R-134a Refrigeration System Using a Two-Phase Ejector as an Expansion Device
,”
Appl. Therm. Eng.
,
28
(5–6), pp.
467
477
.
33.
Khalil
,
A.
,
Fatouh
,
M.
, and
Elgendy
,
E.
,
2011
, “
Ejector Design and Theoretical Study of R134a Ejector Refrigeration Cycle
,”
Int. J. Refrig.
,
34
(
7
), pp.
1684
1698
.
34.
Wang
,
X.
, and
Yu
,
J.
,
2016
, “
Experimental Investigation on Two-Phase Driven Ejector Performance in a Novel Ejector Enhanced Refrigeration System
,”
Energy Convers. Manage.
,
111
, pp.
391
400
.
35.
Boumaraf
,
L.
, and
Lallemand
,
A.
,
2009
, “
Modeling of an Ejector Refrigerating System Operating in Dimensioning and Off-Dimensioning Conditions With the Working Fluids R142b and R600
,”
Appl. Therm. Eng.
,
29
(2–3), pp.
265
274
.
36.
Chen
,
J.
,
Havtun
,
H.
, and
Palm
,
B.
,
2014
, “
Parametric Analysis of Ejector Working Characteristics in the Refrigeration System
,”
Appl. Therm. Eng.
,
69
(1–2), pp.
130
142
.
37.
Nehdi
,
E.
,
Kairouani
,
L.
, and
Bouzaina
,
M.
,
2007
, “
Performance Analysis of the Vapour Compression Cycle Using Ejector as an Expander
,”
Int. J. Energy Res.
,
31
(
4
), pp.
364
375
.
38.
Yapici
,
R.
, and
Ersoy
,
H. K.
,
2005
, “
Performance Characteristics of the Ejector Refrigeration System Based on the Constant Area Ejector Flow Model
,”
Energy Convers. Manage.
,
46
(18–19), pp.
3117
3135
.
39.
Sarkar
,
J.
,
2010
, “
Geometric Parameter Optimization of Ejector Expansion Refrigeration Cycle With Natural Refrigerants
,”
Int. J. Energy Res.
,
34
(
1
), pp.
84
94
.
40.
Ersoy
,
H. K.
, and
Bilir Sag
,
N.
,
2014
, “
Preliminary Experimental Results on the R134a Refrigeration System Using a Two-Phase Ejector as an Expander
,”
Int. J. Refrig.
,
43
, pp.
97
110
.
41.
Bilir Sag
,
N.
,
Ersoy
,
H. K.
,
Hepbasli
,
A.
, and
Halkaci
,
H. S.
,
2015
, “
Energetic and Exergetic Comparison of Basic and Ejector Expander Refrigeration Systems Operating Under the Same External Conditions and Cooling Capacities
,”
Energy Convers. Manage.
,
90
, pp.
184
194
.
42.
Yapici
,
R.
,
Ersoy
,
H. K.
,
Aktoprakoglu
,
A.
,
Halkaci
,
H. S.
, and
Yigit
,
O.
,
2008
, “
Experimental Determination of the Optimum Performance of Ejector Refrigeration System Depending on Ejector Area Ratio
,”
Int. J. Refrig.
,
31
(
7
), pp.
1183
1189
.
43.
Bilir
,
N.
, and
Ersoy
,
H. K.
,
2009
, “
Performance Improvement of the Vapour Compression Refrigeration Cycle by a Two-Phase Constant Area Ejector
,”
Int. J. Energy Res.
,
33
(
5
), pp.
469
480
.
44.
Ersoy
,
H. K.
, and
Bilir
,
N.
,
2010
, “
The Influence of Ejector Component Efficiencies on Performance of Ejector Expander Refrigeration Cycle and Exergy Analysis
,”
Int. J. Exergy
,
7
(
4
), pp.
425
438
.
45.
Lawrence
,
N.
,
2012
, “
Analytical and Experimental Investigation of Two-Phase Ejector Cycles Using Low-Pressure Refrigerants
,”
M.Sc. dissertation
, University of Illinois at Urbana-Champaign, Urbana, IL.
46.
Lawrence
,
N.
, and
Elbel
,
S.
,
2012
, “
Experimental and Analytical Investigation of Automotive Ejector Air Conditioning Cycles Using Low-Pressure Refrigerants
,”
International Air Conditioning and Refrigeration Conference
(
IRAC
), West Lafayette, IN, July 16–19, pp.
2118
2122
.
47.
Lawrence
,
N.
, and
Elbel
,
S.
,
2014
, “
Experimental Investigation of a Two-Phase Ejector Cycle Suitable for Use With Low-Pressure Refrigerants R134a and R1234yf
,”
Int. J. Refrig.
,
38
, pp.
310
322
.
48.
Lawrence
,
N.
, and
Elbel
,
S.
,
2013
, “
Theoretical and Practical Comparison of Two-Phase Ejector Refrigeration Cycles Including First and Second Law Analysis
,”
Int. J. Refrig.
,
36
(
4
), pp.
1220
1232
.
49.
Selvaraju
,
A.
, and
Mani
,
A.
,
2006
, “
Experimental Investigation on R134a Vapour Ejector Refrigeration System
,”
Int. J. Refrig.
,
29
(
7
), pp.
1160
1166
.
50.
Brunin
,
O.
,
Feidt
,
M.
, and
Hivet
,
B.
,
1997
, “
Comparison of the Working Domains of Some Compression Heat Pumps and a Compression–Absorption Heat Pump
,”
Int. J. Refrig.
,
20
(
5
), pp.
308
318
.
51.
Du Clou
,
S.
,
Brooks
,
M. J.
,
Lear
,
W. E.
,
Sherif
,
S. A.
, and
Khalil
,
E. E.
,
2011
, “
An Ejector Transient Performance Model for Application in a Pulse Refrigeration System
,”
AIAA
Paper No. 2011-5804.
You do not currently have access to this content.