Growing evidence suggests that research must be done to develop energy efficient systems and clean energy conversion technologies to combat the limited sources of fossil fuel, its high price, and its adverse effects on environment. Thermoacoustic is a clean energy conversion technology that uses the conversion of sound to thermal energy and vice versa for the design of heat engines and refrigerators. However, the efficient conversion of sound to thermal energy demands research on altering fluid, operational, and geometric parameters. The present study is a contribution to improve the efficiency of thermoacoustic devices by introducing a novel stack design. This novel stack consists of alternative conducting and insulating materials or heterogeneous materials. The author examined the performance of eight different types of heterogeneous stacks (combination 1–8) that are only a fraction of the displacement amplitude long and consisted of alternating aluminum (AL) and Corning Celcor or reticulated vitreous carbon (RVC) foam materials. From the thermal field measurements, the author found that combination eight performs better (12% more temperature difference at the stack ends) than all the other combinations. One interesting feature obtained from these experiments is that combination 7 produces the minimum temperature at the cold end (17% less than other combinations). The thermal performance of the heterogeneous stack is compared to that of the traditional homogeneous stack. Based on the study, the newly proposed stack design provides better cooling performance than a traditionally designed stack.

References

References
1.
Wong
,
K. V.
,
Perilla
,
N.
, and
Paddon
,
A.
,
2014
, “
Nanoscience and Nanotechnology in Solar Cells
,”
ASME J. Energy Resour. Technol.
,
136
(
1
), p.
014001
.
2.
Nihouse
,
G. C.
,
2007
, “
A Preliminary Assessment of Ocean Thermal Energy Conversion Resources
,”
ASME J. Energy Resour. Technol.
,
129
(
1
), pp.
10
17
.
3.
Anderson
,
M.
, and
Beyene
,
A.
,
2016
, “
Integrated Resource Mapping of Wave and Wind Energy
,”
ASME J. Energy Resour. Technol.
,
138
(
1
), p.
011203
.
4.
Guell
,
B. M.
,
Sandquist
,
J.
, and
Sorum
,
L.
,
2013
, “
Gasification of Biomass to Second Generation Biofuels: A Review
,”
ASME J. Energy Resour. Technol.
,
135
(
1
), p.
014001
.
5.
Wong
,
K. V.
, and
Tan
,
N.
,
2015
, “
Feasibility of Using More Geothermal Energy to Generate Electricity
,”
ASME J. Energy Resour. Technol.
,
137
(
4
), p.
041201
.
6.
Garimella
,
S.
, and
Garimella
,
V. S.
,
1999
, “
Commercial Boiler Waste-Heat Utilization for Air Conditioning in Developing Countries
,”
ASME J. Energy Resour. Technol.
,
121
(
3
), pp.
203
208
.
7.
Jacobs
,
T. J.
,
2015
, “
Waste Heat Recovery Potential of Advanced Internal Combustion Engine Technologies
,”
ASME J. Energy Resour. Technol.
,
137
(
4
), p.
042004
.
8.
Schock
,
H.
,
Brereton
,
G.
,
Case
,
E.
,
D'Angelo
,
J.
,
Hogan
,
T.
,
Lyle
,
M.
,
Maloney
,
R.
,
Moran
,
K.
,
Novak
,
J.
,
Nelson
,
C.
,
Panayi
,
A.
,
Ruckle
,
T.
,
Sakamoto
,
J.
,
Shih
,
T.
,
Timm
,
E.
,
Zhang
,
L.
, and
Zhu
,
G.
,
2013
, “
Prospects for Implementation of Thermoelectric Generators as Waste Heat Recovery Systems in Class 8 Truck Applications
,”
ASME J. Energy Resour. Technol.
,
135
(
2
), p.
0022001
.
9.
Smith
,
R. W. M.
, Keolian, R. M., and Garrett, S. L.,
1999
, “
High Efficiency 2-kW Thermoacoustic Driver
,”
J. Acoust. Soc. Am.
,
105
(2), pp.
1072
1078
.
10.
Adeff
,
J. A.
, and
Hofler
,
T. J.
,
2000
, “
Design and Construction of a Solar Powered, Thermoacoustically Driven, Thermoacoustic Refrigerator
,”
J. Acoust. Soc. Am.
,
107
(
6
), pp.
L37
L42
.
11.
Swift
,
G. W.
,
1992
, “
Analysis and Performance of a Large Thermoacoustic Engine
,”
J. Acoust. Soc. Am.
,
92
(
3
), pp.
1551
1563
.
12.
Swift
,
G. W.
,
1988
, “
Thermoacoustic Engines
,”
J. Acoust. Soc. Am.
,
84
(
4
), pp.
1145
1180
.
13.
Swift
,
G. W.
,
Migliori
,
A.
,
Hofler
,
T. J.
, and
Wheatley
,
J.
,
1985
, “
Theory and Calculations for an Intrinsically Irreversible Acoustic Prime Mover Using Liquid Sodium as Working Fluid
,”
J. Acoust. Soc. Am.
,
78
(
2
), pp.
767
781
.
14.
Swift, G. W., 2002, “
Thermoacoustics: A Unifying Perspective for Some Engines and Refrigerators
,” Los Alamos National Laboratory, Los Alamost, NM, Report No. LA-UR-99-895.
15.
Garrett
,
S. L.
, and
Hofler
,
T. J.
,
1992
, “
ThermoAcoustic Refrigeration
,”
ASHARE J.
,
34
(12), pp.
28
36
.
16.
Garrett
,
S. L.
,
2004
, “
Resource Letter: TA-1: Thermoacoustic Engines and Refrigerators
,”
Am. J. Phys.
,
72
(
1
), pp.
11
17
.
17.
Garrett
,
S. L.
,
1997
, “
High Power Thermoacoustic Refrigerator
,” U.S. Patent No.
5,647,216
.
18.
Garrett
,
S. L.
,
Adeff
,
J. A.
, and
Hofler
,
T.
,
1993
, “
Thermoacoustic Refrigerator for Space Applications
,”
J. Thermophys. Heat Transfer
,
7
(
4
), pp.
595
599
.
19.
Garret
,
S. L.
,
Perkins
,
D. K.
, and
Gopinath
,
A.
,
1994
, “
Thermoacoustic Refrigerator Heat Exchangers: Design, Analysis, and Fabrication
,”
Tenth International Heat Transfer Conference
, Brighton, UK, Aug. 14–18, pp.
375
380
.
20.
Migliori
,
A.
, and
Swift
,
S. G.
,
1988
, “
Liquid Sodium Thermoacoustic Engine
,”
Appl. Phys. Lett.
,
53
(
5
), pp.
355
357
.
21.
Hofler
,
T.
,
1986
, “
Thermoacoustic Refrigerator Design and Performance
,” Ph.D. thesis, University of California, San Diego, CA.
22.
Poese
,
M. E.
, and
Garrett
,
S. L.
,
2000
, “
Performance Measurements on a Thermoacoustic Refrigerator Driven at High Amplitudes
,”
J. Acoust. Soc. Am.
,
107
(
5
), pp.
2480
2486
.
23.
Tijani
,
M. E. H.
,
2001
, “
Loudspeaker-Driven Thermo-Acoustic Refrigeration
,”
Ph.D. thesis
, Eindhoven University of Technology, Eindhoven, The Netherlands.
24.
Reid
,
R. S.
, and
Swift
,
G. W.
,
2000
, “
Experiments With a Flow-Through Thermoacoustic Refrigerator
,”
J. Acoust. Soc. Am.
,
108
(
6
), pp.
2835
2842
.
25.
Adeff
,
J. A.
,
Hofler
,
T. J.
,
Atchley
,
A. A.
, and
Moss
,
W. C.
,
1998
, “
Measurements With Reticulated Vitreous Carbon Stacks in Thermoacoustic Prime Movers and Refrigerators
,”
J. Acoust. Soc. Am.
,
104
(
1
), pp.
32
38
.
26.
Bösel
,
J.
,
Trepp
,
C.
, and
Fourie
,
J. G.
,
1999
, “
An Alternative Stack Arrangement for Thermoacoustic Heat Pumps and Refrigerators
,”
J. Acoust. Soc. Am.
,
106
(
2
), pp.
707
715
.
27.
Swift
,
G. W.
, and
Keolian
,
R. M.
,
1993
, “
Thermoacoustics in Pin-Array Stacks
,”
J. Acoust. Soc. Am.
,
94
(
2
), pp.
941
943
.
28.
Ishikawa
,
H.
, and
Mee
,
D. J.
,
2002
, “
Numerical Investigation of Flow and Energy Fields Near a Thermoacoustic Couple
,”
J. Acoust. Soc. Am.
,
111
(
2
), pp.
831
839
.
29.
Roh
,
H. S.
,
Raspet
,
R.
, and
Bass
,
H. E.
,
2007
, “
Parallel Capillary-Tube-Based Extension of Thermoacoustic Theory for Random Porous Media
,”
J. Acoust. Soc. Am.
,
121
(
3
), pp.
1413
1422
.
30.
Jensen
,
C.
, and
Raspet
,
R.
,
2010
, “
Thermoacoustic Properties of Fibrous Materials
,”
J. Acoust. Soc. Am.
,
127
(
6
), pp.
3470
3484
.
31.
Mahmud
,
S.
, and
Fraser
,
R. A.
,
2009
, “
Therporaoustic Convection: Modeling and Analysis of Flow, Thermal, and Energy Fields
,”
ASME J. Heat Transfer
,
13
(
10
), p.
101011
.
32.
Tasnim
,
S. H.
,
Mahmud
,
S.
, and
Fraser
,
R. A.
,
2012
, “
Modeling and Analysis of Flow, Thermal, and Energy Fields Within Stacks of Thermoacoustic Engines Filled With Porous Media
,”
Heat Transfer Eng.
,
33
(
15
), pp.
1
14
.
33.
Tasnim
,
S. H.
,
Mahmud
,
S.
,
Fraser
,
R. A.
, and
Pop
,
I.
,
2011
, “
Brinkman Forchheimer Modeling for Porous Media Thermoacoustic System
,”
Int. J. Heat Mass Transfer
,
54
(
17–18
), pp.
3811
3821
.
34.
Tasnim
,
S. H.
,
Mahmud
,
S.
, and
Fraser
,
R. A.
,
2011
, “
Second Law Analysis of Porous Thermoacoustic Stack Systems
,”
Appl. Therm. Eng.
,
31
(
14–15
), pp.
2301
2311
.
35.
Tasnim
,
S. H.
,
Mahmud
,
S.
, and
Fraser
,
R. A.
,
2009
, “
Modeling and Analysis of Flow, Thermal, and Energy Fields Within Stacks of Thermoacoustic Engines Filled With Porous Media: A Conjugate Problem
,”
ASME J. Therm. Sci. Eng. Appl.
,
1
(
4
), p.
041006
.
36.
Mahmud
,
S.
,
Tasnim
,
S. H.
,
Fraser
,
R. A.
, and
Pop
,
I.
,
2011
, “
Hydrodynamic and Thermal Interaction of a Periodically Oscillating Fluid With a Porous Medium Lying Over a Thick Solid Plate
,”
Int. J. Therm. Sci.
,
50
(
10
), pp.
1908
1919
.
37.
Matveev
,
K. I.
,
2010
, “
Thermoacoustic Energy Analysis of Transverse-Pin and Tortuous Stacks at Large Acoustic Displacements
,”
Int. J. Therm. Sci.
,
49
(
6
), pp.
1019
1025
.
38.
Asgharian
,
B.
, and
Matveev
,
K. I.
,
2014
, “
Influence of Finite Heat Capacity of Solid Pins and Their Spacing on Thermoacoustic Performance of Transverse-Pin Stacks
,”
Appl. Therm. Eng.
,
62
(
2
), pp.
593
598
.
39.
Huan
,
G.
,
Li
,
F.
,
Jie
,
X.
,
Shu-Yi
,
Z.
,
Sha
,
T.
,
Yue-Tao
,
Y.
, and
Hui
,
Z.
,
2014
, “
Nonlinear Impedances of Thermoacoustic Stacks With Ordered and Disordered Structures
,”
Chin. Phys. B
,
23
(
7
), p.
074301
.
40.
Ikhsan
,
S.
,
Utomo
,
B. S.
,
Katsuta
,
A.
, and
Makoto
,
M. N.
,
2013
, “
Experimental Study on the Influence of the Porosity of Parallel Plate Stack on the Temperature Decrease of a Thermoacoustic Refrigerator
,”
J Phys.: Conf Ser.
,
423
(
1
), pp.
105
110
.
41.
Hatazaw
,
M.
,
2012
, “
Oscillatory Flow in a Thermoacoustic Sound Wave Generator: Optimum Stack Size and Shape
,”
J. Cryog. Soc. Jpn.
,
47
(
1
), pp.
16
23
.
42.
Yanagimoto
,
K.
,
Sakamoto
,
S.-I.
,
Kuroda
,
K.
,
Nakano
,
Y.
, and
Watanabe
,
Y.
,
2012
, “
Improvement of Energy Conversion Efficiency of Thermoacoustic Engine by a Multistage Stack With Multiple Pore Radii, Nonlinear Acoustics State-of-the-Art and Perspectives
,”
AIP Conf. Proc.
,
1474
(1), pp.
279
282
.
43.
Corning
,
2016
, “Corning Celcor Substrate Stationary Applications”, Corning, Inc., Corning, NY, accessed Jan. 20, 2015, http://www.corning.com/environmentaltechnologies/products_services/corning_celcor_substrate_stationary_applications.aspx (discontinued).
44.
ERG Materials and Aerospace Corporation
,
2016
, “ERG Aerospace Corporation,” Oakland, CA, accessed Dec. 15, 2014, www.ergaerospace.com
45.
National Instruments
,
2016
, “
Operating Instructions and Specifications NI 9211 4-Channel Thermocouple Input Module
,” National Instruments, Austin, TX, accessed Jan. 12, 2015, http://www.ni.com/pdf/manuals/373466d.pdf
46.
Omega Engineering
, 2014, “
Color Codes for Thermocouples, Wire and Connectors, Tolerances, Special Limits of Error, Reference Guide
,” Omega Engineering, Norwalk, CT, accessed Apr. 20, 2016, http://www.omega.com/pptst/TC_GEN_SPECS_REF.html
47.
Omega Engineering
,
2016
, “Thermocouples: Using Thermocouples in Temperature Measurement,” Omega Engineering, Norwalk, CT, accessed Jan. 25, 2015, http://www.omega.com/prodinfo/ThermocoupleSensor.html
48.
Wheeler
,
J. A.
, and
Ganji
,
R. A.
,
2010
,
Introduction to Engineering Experimentation
,
3rd ed.
,
Prentice Hall
, Upper Saddle River, NJ.
You do not currently have access to this content.