Thermocells convert heat energy directly into electrical energy through charge-transfer reactions at the electrode–electrolyte interface. To perform an analytical study on the behavior of thermocells, the Onsager flux relationship was applied to thermocells, which used aqueous copper II sulfate and aqueous potassium ferri/ferrocyanide as the electrolyte. The transport coefficient matrices were calculated for each electrolyte and applied to several simulations, which were subsequently validated through experimental testing and comparison to previous literature results. The simulation is shown to correctly predict the short circuit current, maximum power output, and power conversion efficiency. Validation demonstrates that the simulation model developed, using the Onsager flux equations, works for thermocells with different electrode materials (platinum, copper, charcoal, acetylene black, and carbon nanotube), electrode spacing, and temperature differentials. The power dependence of the thermocell on concentration and electrode spacing, with respect to the Seebeck coefficient, maximum power output, and relative efficiency, is also shown.

References

References
1.
Shah
,
A. J.
, and
Patel
,
C. D.
,
2010
, “
Exergo-Thermo-Volumes: An Approach for Environmentally Sustainable Thermal Management of Energy Conversion Devices
,”
ASME J. Energy Resour. Technol.
,
132
(
2
), p.
021002
.
2.
Manda
,
S.
,
Saini
,
A.
,
Khaleeq
,
S.
,
Patel
,
R.
,
Usmani
,
B.
,
Harinipriya
,
S.
,
Pratiher
,
B.
, and
Roy
,
B.
,
2013
, “
Thermocells of Carbon Material Electrodes and Its Performance Characteristics
,”
J. Mater. Res. Technol.
,
2
(
2
), pp.
165
181
.
3.
Gunawan
,
A.
,
Li
,
H.
,
Lin
,
C.-H.
,
Buttry
,
D. A.
,
Mujica
,
V.
,
Taylor
,
R. A.
,
Prasher
,
R. S.
, and
Phelan
,
P. E.
,
2014
, “
The Amplifying Effect of Natural Convection on Power Generation of Thermogalvanic Cells
,”
Int. J. Heat Mass Transfer
,
78
, pp.
423
434
.
4.
Salazar
,
P.
,
Kumar
,
S.
, and
Cola
,
B.
,
2014
, “
Design and Optimization of Thermo-Electrochemical Cells
,”
J. Appl. Electrochem.
,
44
(
2
), pp.
325
336
.
5.
Abraham
,
T. J.
,
MacFarlane
,
D. R.
,
Baughman
,
R. H.
,
Jin
,
L.
,
Li
,
N.
, and
Pringle
,
J. M.
,
2013
, “
Towards Ionic Liquid-Based Thermoelectrochemical Cells for the Harvesting of Thermal Energy
,”
Electrochim. Acta
,
113
, pp.
87
93
.
6.
Gunawan
,
A.
,
Lin
,
C.-H.
,
Buttry
,
D. A.
,
Mujica
,
V.
,
Taylor
,
R. A.
,
Prasher
,
R. S.
, and
Phelan
,
P. E.
,
2013
, “
Liquid Thermoelectrics: Review of Recent and Limited New Data of Thermogalvanic Cell Experiments
,”
Nanoscale Microscale Thermophys. Eng.
,
17
(
4
), pp.
304
323
.
7.
Hu
,
R.
,
Cola
,
B. A.
,
Haram
,
N.
,
Barisci
,
J. N.
,
Lee
,
S.
,
Stoughton
,
S.
,
Wallace
,
G.
,
Too
,
C.
,
Thomas
,
M.
,
Gestos
,
A.
,
dela Cruz
,
M. E.
,
Ferraris
,
J. P.
,
Zakhidov
,
A. A.
, and
Baughman
,
R. H.
,
2010
, “
Harvesting Waste Thermal Energy Using a Carbon-Nanotube-Based Thermo-Electrochemical Cell
,”
Nano Lett.
,
10
(
3
), pp.
838
846
.
8.
Josserand
,
J.
,
Devaud
,
V.
,
Lagger
,
G.
,
Jensen
,
H.
, and
Girault
,
H. H.
,
2004
, “
Hydrovoltaic Cells. Part II: Thermogalvanic Cells and Numerical Simulations of Thermal Diffusion Potentials
,”
J. Electroanal. Chem.
,
565
(
1
), pp.
65
75
.
9.
Mua
,
Y.
,
Quickenden
,
T. I.
,
Mua
,
Y.
, and
Quickenden
,
T. I.
,
1996
, “
Power Conversion Efficiency, Electrode Separation, and Overpotential in the Ferricyanide/Ferrocyanide Thermogalvanic Cell
,”
J. Electrochem. Soc.
,
143
(
8
), pp.
1558
2564
.
10.
Kuzminskii
,
Y. V.
,
Zasukha
,
V. A.
, and
Kuzminskaya
,
G. Y.
,
1994
, “
Thermoelectric Effects in Electrochemical Systems. Nonconventional Thermogalvanic Cells
,”
J. Power Sources
,
52
(
2
), pp.
231
242
.
11.
Goncalves
,
R. S.
, and
Ikeshoji
,
T.
,
1992
, “
Comparative Studies of a Thermoelectric Converter by a Thermogalvanic Cell With a Mixture of Concentrated Potassium Ferrocyanide and Potassium Ferricyanide Aqueous Solutions at Great Temperature Differences
,”
J. Braz. Chem. Soc.
,
3
(
3
), pp.
98
101
.
12.
Tester
,
J. W.
,
Holeschovsk
,
U.
,
Link
,
K. C.
, and
Corbett
,
J.
,
1992
, “
Evaluation of Thermogalvanic Cells for the Conversion of Heat to Electricity
,” Department of Chemical Engineering and Energy Laboratory, Massachusetts Institute of Technologogy, Cambridge, MA, Report No.
MIT-EL 92-007
.
13.
Ikeshoji
,
T.
,
Bravo de Nahui
,
F. N.
,
Kimura
,
S.
, and
Yoneya
,
M.
,
1991
, “
Computer Analysis on Natural Convection in Thin-Layer Thermocells With a Soluble Redox Couple: Part 2. E–I Relation, Electric Power, Heat Flux and Electrochemical Heat Pump
,”
J. Electroanal. Chem. Interfacial Electrochem.
,
312
(
1–2
), pp.
43
56
.
14.
Ikeshoji
,
T.
,
Kimura
,
S.
,
Bravo de Nahui
,
F. N.
, and
Yoneya
,
M.
,
1991
, “
Computer Analysis of Natural Convection in Thin-Layer Thermocells With a Soluble Redox Couple: Part 1. Method and the Unsteady Problem
,”
J. Electroanal. Chem. Interfacial Electrochem.
,
307
(
1–2
), pp.
29
45
.
15.
Ikeshoji
,
T.
, and
Bravo de Nahui
,
F. N.
,
1990
, “
Fundamental Analysis on a Thermocell With a Mixture of the Soluble Redox Couple Aqueous Potassium Ferrocyanide and Potassium Ferricyanide Solution
,”
J. Electroanal. Chem. Interfacial Electrochem.
,
296
(
1
), pp.
19
36
.
16.
Maeda
,
Y.
,
Itoh
,
E.
, and
Inagaki
,
M.
,
1987
, “
Performance of a Thermocell of Carbon Fibres and Nitric Acid
,”
Synth. Met.
,
20
(
1
), pp.
73
78
.
17.
Quickenden
,
T. I.
, and
Vernon
,
C. F.
,
1986
, “
Thermogalvanic Conversion of Heat to Electricity
,”
Sol. Energy
,
36
(
1
), pp.
63
72
.
18.
Wartanowicz
,
T.
,
1964
, “
The Theoretical Analysis of a Molten Salt Thermocell as a Thermoelectric Generator
,”
Adv. Energy Convers.
,
4
(
3
), pp.
149
158
.
19.
Baschuk
,
J. J.
,
Rowe
,
A. M.
, and
Li
,
X.
,
2003
, “
Modeling and Simulation of PEM Fuel Cells With CO Poisoning
,”
ASME J. Energy Resour. Technol.
,
125
(
2
), pp.
94
100
.
20.
Han
,
S.-H.
,
Choi
,
N.-H.
, and
Choi
,
Y.-D.
,
2014
, “
Simulation and Experimental Analysis on the Performance of PEM Fuel Cell by the Wave-Like Surface Design at the Cathode Channel
,”
Int. J. Hydrogen Energy
,
39
(
6
), pp.
2628
2638
.
21.
Liu
,
H.
,
Li
,
P.
, and
Wang
,
K.
,
2013
, “
Optimization of PEM Fuel Cell Flow Channel Dimensions—Mathematic Modeling Analysis and Experimental Verification
,”
Int. J. Hydrogen Energy
,
38
(
23
), pp.
9835
9846
.
22.
Falcão
,
D. S.
,
Gomes
,
P. J.
,
Oliveira
,
V. B.
,
Pinho
,
C.
, and
Pinto
,
A. M. F. R.
,
2011
, “
1D and 3D Numerical Simulations in PEM Fuel Cells
,”
Int. J. Hydrogen Energy
,
36
(
19
), pp.
12486
12498
.
23.
Campanari
,
S.
,
Macchi
,
E.
, and
Manzolini
,
G.
,
2008
, “
Innovative Membrane Reformer for Hydrogen Production Applied to PEM Micro-Cogeneration: Simulation Model and Thermodynamic Analysis
,”
Int. J. Hydrogen Energy
,
33
(
4
), pp.
1361
1373
.
24.
Meng
,
H.
,
2008
, “
Numerical Analyses of Non-Isothermal Self-Start Behaviors of PEM Fuel Cells From Subfreezing Startup Temperatures
,”
Int. J. Hydrogen Energy
,
33
(
20
), pp.
5738
5747
.
25.
Cao
,
J.
, and
Djilali
,
N.
,
2005
, “
Numerical Modeling of PEM Fuel Cells Under Partially Hydrated Membrane Conditions
,”
ASME J. Energy Resour. Technol.
,
127
(
1
), pp.
26
36
.
26.
Obara
,
S.
,
2006
, “
The Exhaust Heat Use Plan When Connecting Solar Modules to a Fuel Cell Energy Network
,”
ASME J. Energy Resour. Technol.
,
129
(
1
), pp.
18
28
.
27.
Lee
,
T.
,
Kim
,
H.-S.
, and
Yoo
,
H.-I.
,
2014
, “
From Onsager to Mixed Ionic Electronic Conductors
,”
Solid State Ionics
,
262
, pp.
2
8
.
28.
Sellitto
,
A.
,
2014
, “
Crossed Nonlocal Effects and Breakdown of the Onsager Symmetry Relation in a Thermodynamic Description of Thermoelectricity
,”
Phys. D
,
283
, pp.
56
61
.
29.
Bates
,
A.
,
Hwang
,
S.
,
Mukherjee
,
S.
,
Lee
,
S. C.
,
Kwon
,
O.
,
Choi
,
G. H.
, and
Park
,
S.
,
2013
, “
Simulation of an Innovative Polymer Electrolyte Membrane Fuel Cell Design for Self-Control Thermal Management
,”
Int. J. Hydrogen Energy
,
38
(
20
), pp.
8422
8436
.
30.
Virkar
,
A. V.
,
2012
, “
Transport Through Mixed Proton, Oxygen Ion and Electron/Hole Conductors: Analysis of Fuel Cells and Electrolyzer Cells Using Onsager Equations
,”
Int. J. Hydrogen Energy
,
37
(
17
), pp.
12609
12628
.
31.
Eftekhari
,
A.
,
2003
, “
On the Onsager's Phenomenological Coefficient of Prussian Blue Electrochemical Redox System
,”
Chem. Phys. Lett.
,
374
(
1–2
), pp.
164
169
.
32.
Gyftopoulos
,
E. P.
, and
Beretta
,
G. P.
,
1993
, “
Entropy Generation Rate in a Chemically Reacting System
,”
ASME J. Energy Resour. Technol.
,
115
(
3
), pp.
208
212
.
33.
Coury
,
L.
,
1999
, “
Conductance Measurements Part 1: Theory
,”
Curr. Sep.
,
18
(
3
), pp.
91
96
.
34.
Demichowicz-Pigoniowa
,
J.
,
1977
, “
Temperature and Concentration Dependence of the Soret Coefficient for Aqueous Copper Sulphate Solutions—I. Soret Coefficient and Heat of Transport at 25 deg
,”
Electrochim. Acta
,
22
(
9
), pp.
1031
1033
.
35.
Rowe
,
D. M.
,
1995
,
CRC Handbook of Thermoelectrics
,
CRC Press
, Boca Raton, FL.
36.
Quickenden
,
T. I.
, and
Mua
,
Y.
,
1995
, “
The Power Conversion Efficiencies of a Thermogalvanic Cell Operated in Three Different Orientations
,”
J. Electrochem. Soc.
,
142
(
11
), pp.
3652
3659
.
You do not currently have access to this content.