In acidizing operations, the acid flows selectively through large pores to create wormholes. Wormhole propagation has been studied by many experts at macroscopic scale. In this paper, the lattice Boltzmann model (LBM), which is a mesoscopic scale method, is adopted to simulate the flow, acid–rock reaction, and rock dissolution in porous media at mesoscopic scale. In this model, a new method based on nonequilibrium extrapolation is proposed to deal with the reactive boundary. On the basis of the model, extensive simulations are conducted on the propagation behavior of wormholes, and the factors influencing wormhole propagation are investigated systematically. The results show that the LBM is a reliable numerical technique to study chemical dissolution in porous media at mesoscopic scale, and that the new method of dealing with the reaction boundary performs well. The breakthrough time decreases with the increase of acid concentration, but acid concentration does not affect the ultimate dissolution pattern. As the reaction rate constant increases, shorter wormholes are created. A higher hydrogen ion diffusion coefficient will result in shorter but wider wormholes. These findings agree well with the previous experimental and theoretical analyses. This study demonstrates the mechanism of wormholing that the unstable growth of pores by the acid rock reaction makes the acid selectively flow through a few large pores which finally form wormholes.

References

References
1.
Hofmann
,
H.
,
Babadagli
,
T.
, and
Zimmermann
,
G.
,
2014
, “
Numerical Simulation of Complex Fracture Network Development by Hydraulic Fracturing in Naturally Fractured Ultratight Formations
,”
ASME J. Energy Resour. Technol.
,
136
(
4
), p.
042905
.
2.
Wang
,
W.
, and
Dahi Taleghani
,
A.
,
2014
, “
Simulation Multizone Fracturing in Vertical Wells
,”
ASME J. Energy Resour. Technol.
,
136
(
4
), p.
042902
.
3.
Guo
,
T.
,
Zhang
,
S.
,
Qu
,
Z.
,
Zhou
,
T.
,
Xiao
,
Y.
, and
Gao
,
J.
,
2014
, “
Experimental Study of Hydraulic Fracturing for Shale by Stimulated Reservoir Volume
,”
Fuel
,
128
, pp.
373
380
.
4.
Mahmoud
,
M.
, and
Nasr-EI-Din
,
H.
,
2014
, “
Challenges During Shallow and Deep Carbonate Reservoirs Stimulation
,”
ASME J. Energy Resour. Technol.
,
137
(
1
), p.
012902
.
5.
Bastami
,
A.
, and
Pourafshary
,
P.
,
2016
, “
Development of a New Model for Carbonate Matrix Acidizing to Consider the Effects of Spent Acid
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052905
.
6.
Barri
,
A.
,
Mahmoud
,
M.
, and
EIkatatny
,
S.
,
2016
, “
Evaluation of Rock Mechanical Properties Alteration During Matrix Stimulation With Chelating Agents
,”
ASME J. Energy Resour. Technol.
,
138
(
3
), p.
032907
.
7.
Nunes
,
M.
,
Bedrikovetsky
,
P.
,
Newbery
,
B.
,
Paiva
,
R.
,
Furtado
,
C.
, and
Souza
,
A. L. D.
,
2010
, “
Theoretical Definition of Formation Damage Zone With Applications to Well Stimulation
,”
ASME J. Energy Resour. Technol.
,
132
(
2
), pp.
87
94
.
8.
Daccord
,
G.
,
Lenormand
,
R.
, and
Lietard
,
O.
,
1993a
, “
Chemical Dissolution of a Porous Medium by a Reactive Fluid-1. Model for the ‘Wormholing’ Phenomenon
,”
Chem. Eng. Sci.
,
48
(
1
), pp.
169
178
.
9.
Daccord
,
G.
,
Lenormand
,
R.
, and
Lietard
,
O.
,
1993b
, “
Chemical Dissolution of a Porous Medium by a Reactive Fluid-2. Convection versus Reaction, Behavior Diagram
,”
Chem. Eng. Sci.
,
48
(
1
), pp.
179
186
.
10.
Fredd
,
C. N.
, and
Fogler
,
H. S.
,
1999
, “
Optimum Conditions for Wormhole Formation in Carbonate Porous Media: Influence of Transport and Reaction
,”
SPE J.
,
4
(
3
), pp.
196
205
.
11.
Frick
,
T. P.
,
Mostofizadeh
,
B.
, and
Economides
,
M. J.
,
1994
, “
Analysis of Radial Core Experiments for Hydrochloric Acid Interaction With Limestones
,”
International Symposium on Formation Damage Control
, Lafayette, LA, Feb. 7–10,
Paper No. SPE27402
.
12.
Buijse
,
M. A.
,
2000
, “
Understanding Wormholing Mechanisms Can Improve Acid Treatments in Carbonate Formations
,”
SPE Prod. Facil.
,
15
(
3
), pp.
168
175
.
13.
Bazin
,
B.
,
2001
, “
From Matrix Acidizing to Acid Fracturing: A Laboratory Evaluation of Acid/Rock Interactions
,”
SPE Prod. Facil.
,
16
(
1
), pp.
22
29
.
14.
Ortoleva
,
P. J.
,
Chadam
,
J.
,
Merino
,
E.
, and
Sen
,
A.
,
1987
, “
Geochemical Self-Organization—Part II: The Reactive-Infiltration Instability
,”
Am. J. Sci.
,
287
(
10
), pp.
1008
1040
.
15.
Wei
,
C.
, and
Ortoleva
,
P.
,
1990
, “
Reaction Front Fingering in Carbonate-Cemented Sandstones
,”
Earth-Sci. Rev.
,
29
(
1–4
), pp.
183
198
.
16.
Steefel
,
C. I.
, and
Lasaga
,
A. C.
,
1994
, “
A Coupled Model for Transport of Multiple Chemical-Species and Kinetic Precipitation Dissolution Reactions With Application to Reactive Flow in Single-Phase Hydrothermal Systems
,”
Am. J. Sci.
,
294
(
5
), pp.
529
592
.
17.
Liu
,
X.
,
Ormond
,
A.
,
Bartko
,
K.
,
Ying
,
L.
, and
Ortoleva
,
P.
,
1997
, “
A Geochemical Reaction-Transport Simulator for Matrix Acidizing Analysis and Design
,”
J. Pet. Sci. Eng.
,
17
(
1
), pp.
181
196
.
18.
Ormond
,
A.
, and
Ortoleva
,
P.
,
2000
, “
Numerical Modeling of Reaction-Induced Cavities in a Porous Rock
,”
J. Geophys. Res. Atmos.
,
105
(B
7
), pp.
16737
16747
.
19.
Panga
,
M. K. R.
,
2003
, “
Multiscale Transport and Reaction: Two Case Studies
,” Ph.D. dissertation, The University of Houston, Houston, TX.
20.
Panga
,
M. K. R.
,
Ziauddin
,
M.
, and
Balakotaiah
,
V.
,
2005
, “
Two-Scale Continuum Model for Simulation of Wormholes in Carbonate Acidization
,”
AIChE J.
,
51
(
12
), pp.
3231
3248
.
21.
Izgec
,
O.
,
Keys
,
R.
,
Zhu
,
D.
, and
Hill
,
A. D.
,
2008
, “
An Integrated Theoretical and Experimental Study on the Effects of Multiscale Heterogeneities in Matrix Acidizing of Carbonates
,”
SPE Annual Technical Conference and Exhibition
, Denver, CO, Sept. 21–24,
Paper No. SPE115143
.
22.
Izgec
,
O.
,
Zhu
,
D.
, and
Hill
,
A. D.
,
2009
, “
Models and Methods for Understanding of Early Acid Breakthrough Observed in Acid Core-Floods of Vuggy Carbonates
,”
SPE European Formation Damage Conference
, Scheveningen, The Netherlands, May 27–29,
Paper No. SPE122357
.
23.
Wells
,
J. T.
,
Janecky
,
D. R.
, and
Travis
,
B. J.
,
1991
, “
A Lattice Gas Automata Model for Heterogeneous Chemical Reactions at Mineral Surfaces and in Pore Networks
,”
Phys. D Nonlinear Phenom.
,
47
(
1–2
), pp.
115
123
.
24.
Boek
,
E. S.
, and
Venturoli
,
M.
,
2010
, “
Lattice-Boltzmann Studies of Fluid Flow in Porous Media With Realistic Rock Geometries
,”
Comput. Math. Appl.
,
59
(
7
), pp.
2305
2314
.
25.
Han
,
Y.
, and
Cundall
,
P. A.
,
2010
, “
Lattice Boltzmann Modeling of Pore-Scale Fluid Flow Through Idealized Porous Media
,”
Int. J. Numer. Methods Fluids
,
67
(
11
), pp.
1720
1734
.
26.
Gao
,
Y.
,
Zhang
,
X.
,
Rama
,
P.
,
Liu
,
Y.
,
Chen
,
R.
,
Ostadi
,
H.
, and
Jiang
,
K.
,
2012
, “
Calculating the Anisotropic Permeability of Porous Media Using the Lattice Boltzmann Method and X-Ray Computed Tomography
,”
Transp. Porous Media
,
92
(
2
), pp.
457
472
.
27.
Jiang
,
B.
, and
Zhang
,
X.
,
2014
, “
An Orthorhombic Lattice Boltzmann Model for Pore-Scale Simulation of Fluid Flow in Porous Media
,”
Transp. Porous Media
,
104
(
1
), pp.
145
159
.
28.
Angelopoulos
,
A. D.
,
Paunov
,
V. N.
,
Burganos
,
V. N.
, and
Payatakes
,
A. C.
,
1998
, “
Lattice Boltzmann Simulation of Nonideal Vapor-Liquid Flow in Porous Media
,”
Phys. Rev. E: Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top.
,
57
(
3
), pp.
3237
3245
.
29.
Kang
,
Q.
,
Zhang
,
D.
, and
Chen
,
S.
,
2002
, “
Displacement of a Two-Dimensional Immiscible Droplet in a Channel
,”
Phys. Fluids
,
14
(
9
), pp.
3203
3214
.
30.
Pan
,
C.
,
Hilpert
,
M.
, and
Miller
,
C. T.
,
2004
, “
Lattice-Boltzmann Simulation of Two-Phase Flow in Porous Media
,”
Water Resour. Res.
,
40
(
1
), pp.
62
74
.
31.
Benzi
,
R.
,
Biferale
,
L.
,
Sbragaglia
,
M.
,
Succi
,
S.
, and
Toschi
,
F.
,
2006
, “
Mesoscopic Modeling of a Two-Phase Flow in the Presence of Boundaries: The Contact Angle
,”
Phys. Rev. E
,
74
(
2 Pt. 1
), pp.
79
97
.
32.
He
,
X.
,
Chen
,
S.
, and
Doolen
,
G. D.
,
1998
, “
A Novel Thermal Model for the Lattice Boltzmann Method in Incompressible Limit
,”
J. Comput. Phys.
,
146
(
1
), pp.
282
300
.
33.
Ibrahem
,
A. M.
,
El-Amin
,
M. F.
,
Mohammadein
,
A. A.
, and
Gorla
,
R. S. R.
,
2016
, “
Lattice Boltzmann Technique for Heat Transport Phenomena Coupled With Melting Process
,”
Heat Mass Transfer
,
52
(
333
), pp.
1
9
.
34.
Kelemen
,
P. B.
,
Whitehead
,
J. A.
,
Einat
,
A.
, and
Jordahl
,
K. A.
,
1995
, “
Experiments on Flow Focusing in Soluble Porous-Media, With Applications to Melt Extraction From the Mantle
,”
J. Geophys. Res. Atmos.
,
100
(B
1
), pp.
475
496
.
35.
Xiaoyi
,
He.
,
Ning
,
Li.
, and
Goldstein
,
B.
,
2000
, “
Lattice Boltzmann Simulation of Diffusion-Convection Systems With Surface Chemical Reaction
,”
Mol. Simul.
,
25
(
3
), pp.
145
156
.
36.
Kang
,
Q.
,
Zhang
,
D.
,
Chen
,
S.
, and
He
,
X.
,
2002
, “
Lattice Boltzmann Simulation of Chemical Dissolution in Porous Media
,”
Phys. Rev. E Stat. Nonlinear Soft Matter Phys.
,
65
(
3 Pt. 2B
), p.
036318
.
37.
He
,
X.
, and
Luo
,
L. S.
,
1997
, “
A Priori Derivation of the Lattice Boltzmann Equation
,”
Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top.
,
55
(
6
), pp.
R6333
R6336
.
38.
Abe
,
T.
,
1997
, “
Derivation of the Lattice Boltzmann Method by Means of the Discrete Ordinate Method for the Boltzmann Equation
,”
J. Comput. Phys.
,
131
(
1
), pp.
241
246
.
39.
Succi
,
S.
,
2001
,
The Lattice Boltzmann Equation for Fluid Dynamics and Beyond
,
Oxford University Press
,
Brussels, Belgium
.
40.
Chen
,
S.
, and
Doolen
,
G. D.
,
2003
, “
Lattice Boltzmann Method for Fluid Flows
,”
Annu. Rev. Fluid Mech.
,
30
(
1
), pp.
329
364
.
41.
Wolf-Gladrow
,
D. A.
,
2000
,
Lattice-Gas Cellular Automata and Lattice Boltzmann Models
,
Springer
,
Berlin
.
42.
Bhatnagar
,
P.
,
Gross
,
E.
, and
Krook
,
M.
,
1954
, “
A Model for Collisional Processes in Gases I: Small Amplitude Processes in Charged and Neutral One-Component System
,”
Phys. Rev.
,
94
(
3
), pp.
511
525
.
43.
Qian
,
Y. H.
,
D'Humières
,
D.
, and
Lallemand
,
P.
,
1992
, “
Lattice BGK Models for Navier–Stokes Equation
,”
Europhys. Lett.
,
17
(
6BIS
), p.
479
.
44.
Li-Shi Luo
,
P. L.
,
2000
, “
Theory of the Lattice Boltzmann Method: Dispersion, Dissipation, Isotropy, Galilean Invariance, and Stability
,”
Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top.
,
61
(
6 Pt. A
), pp.
6546
6562
.
45.
Kang
,
Q.
,
Lichtner
,
P. C.
, and
Zhang
,
D.
,
2007
, “
An Improved Lattice Boltzmann Model for Multicomponent Reactive Transport in Porous Media at the Pore Scale
,”
Water Resour. Res.
,
43
(
12
), pp.
2578
2584
.
46.
Noble
,
D. R.
,
1997
, “
Lattice Boltzmann Study of the Interstitial Hydrodynamics and Dispersion in Steady Intertial Flows in Large Randomly Packed Beds
,”
Ph.D. thesis
, University of Illinois at Urbana–Champaign, Champaign, IL.
47.
Dawson
,
S. P.
,
Chen
,
S.
, and
Doolen
,
G. D.
,
1993
, “
Lattice Boltzmann Computations for Reaction-Diffusion Equations
,”
J. Chem. Phys.
,
98
(
2
), pp.
1514
1523
.
48.
Huber
,
C.
,
Shafei
,
B.
, and
Parmigiani
,
A.
,
2014
, “
A New Pore-Scale Model for Linear and Non-Linear Heterogeneous Dissolution and Precipitation
,”
Geochim. Cosmochim. Acta
,
124
(
1
), pp.
109
130
.
49.
Carslaw
,
H. S.
,
Jaeger
,
J. C.
, and
Feshbach
,
H.
,
1959
,
Conduction of Heat in Solids
,
Clarendon Press
,
Gloucestershire, UK
.
50.
Hoefner
,
M. L.
, and
Fogler
,
H. S.
,
1988
, “
Porous Evolution and Channel Formation During Flow and Reaction in Porous Media
,”
Am. Inst. Chem. Eng. J.
,
34
(
1
), pp.
45
54
.
You do not currently have access to this content.