This paper reports the findings of an investigation into the molecular structures and properties of three asphaltene samples, namely, an asphaltene sample extracted from Buton Oil Sand (Indonesia), and two asphaltene samples extracted from vacuum residues from Liaohe Refinery (China) and Vene Refinery (Venezuela), respectively. The average molecular structural parameters, including the average polycyclic aromatic hydrocarbon (PAH) size, average side chain length, and average molecular weight (AMW), of the three asphaltene samples were estimated using data from nuclear magnetic resonance (NMR) in combination with distortionless enhancement by polarization transfer (DEPT), and then compared against each other. The molecular weight distributions (MWDs) of the three asphaltene samples were measured using a matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry. The results indicated that the island molecular architecture predominated in all three asphaltenes and the average polycyclic aromatic hydrocarbon size was found to be six rings. The average molecular weight of the Buton asphaltene sample was found to be ca. 800 Da while those of the two petroleum asphaltene samples were approximately 600 Da. In comparison, the Buton asphaltene sample contained a much higher level of oxygen and sulfur, but a lower aromaticity than those of the two petroleum asphaltene samples. The use of liquid NMR in combination with DEPT was shown to provide an effective method for characterization and estimation of the molecular structures of asphaltenes, supported by MALDI-TOF mass spectra.

References

1.
Leontaritis
,
K. J.
,
2005
, “
Asphaltene Near-Well-Bore Formation Damage Modeling
,”
ASME J. Energy Resour. Technol.
,
127
(
3
), pp.
191
200
.
2.
Wang
,
S.
, and
Civan
,
F.
,
2005
, “
Modeling Formation Damage by Asphaltene Deposition During Primary Oil Recovery
,”
ASME J. Energy Resour. Technol.
,
127
(
4
), pp.
310
317
.
3.
Mullins
,
O. C.
,
Sheu
,
E. Y.
,
Hammami
,
A.
, and
Marshall
,
A. G.
,
2007
,
Asphaltenes, Heavy Oils, and Petroleomics
,
Springer
,
New York
.
4.
Mousavi
,
S. M. R.
,
Najafi
,
I.
,
Ghazanfari
,
M. H.
, and
Amani
,
M.
,
2012
, “
Comparison of Ultrasonic Wave Radiation Effects on Asphaltene Aggregation in Toluene–Pentane Mixture Between Heavy and Extra Heavy Crude Oils
,”
ASME J. Energy Resour. Technol.
,
134
(
2
), p.
022001
.
5.
Manshad
,
A. K.
,
Rostami
,
H.
,
Rezaei
,
H.
, and
Hosseini
,
S. M.
,
2015
, “
Application of Artificial Neural Network-Particle Swarm Optimization Algorithm for Prediction of Asphaltene Precipitation During Gas Injection Process and Comparison With Gaussian Process Algorithm
,”
ASME J. Energy Resour. Technol.
,
137
(
6
), p.
062904
.
6.
Naderi
,
K.
, and
Babadagli
,
T.
,
2016
, “
Solvent Selection Criteria and Optimal Application Conditions for Heavy-Oil/Bitumen Recovery at Elevated Temperatures: A Review and Comparative Analysis
,”
ASME J. Energy Resour. Technol.
,
138
(
1
), p.
012904
.
7.
Clutter
,
D. R.
,
Petrakis
,
L.
,
Stenger
,
R. L.
, Jr.
, and
Jensen
,
R. K.
,
1972
, “
Nuclear Magnetic Resonance Spectrometry of Petroleum Fractions. Carbon-13 and Proton Nuclear Magnetic Resonance Characterizations in Terms of Average Molecule Parameters
,”
Anal. Chem.
,
44
(
8
), pp.
1395
1405
.
8.
Snape
,
C. E.
,
Ladner
,
W. R.
, and
Bartle
,
K. D.
,
1979
, “
Survey of Carbon-13 Chemical Shifts in Aromatic Hydrocarbons and Its Application to Coal-Derived Materials
,”
Anal. Chem.
,
51
(
13
), pp.
2189
2198
.
9.
Dickinson
,
E. M.
,
1980
, “
Structural Comparison of Petroleum Fractions Using Proton and 13C NMR Spectroscopy
,”
Fuel
,
59
(
5
), pp.
290
294
.
10.
Christopher
,
J.
,
Sarpal
,
A. S.
,
Kapur
,
G. S.
,
Krishna
,
A.
,
Tyagi
,
B. R.
,
Jain
,
M. C.
,
Jain
,
S. K.
, and
Bhatnagar
,
A. K.
,
1996
, “
Chemical Structure of Bitumen-Derived Asphaltenes by Nuclear Magnetic Resonance Spectroscopy and X-Ray Diffractometry
,”
Fuel
,
75
(
8
), pp.
999
1008
.
11.
Masuda
,
K.
,
Okuma
,
O.
,
Nishizawa
,
T.
,
Kanaji
,
M.
, and
Matsumura
,
T.
,
1996
, “
High-Temperature NMR Analysis of Aromatic Units in Asphaltenes and Preasphaltenes Derived From Victorian Brown Coal
,”
Fuel
,
75
(
3
), pp.
295
299
.
12.
Michon
,
L.
,
Martin
,
D.
,
Planche
,
J.-P.
, and
Hanquet
,
B.
,
1997
, “
Estimation of Average Structural Parameters of Bitumens by 13C Nuclear Magnetic Resonance Spectroscopy
,”
Fuel
,
76
(
1
), pp.
9
15
.
13.
Artok
,
L.
,
Su
,
Y.
,
Hirose
,
Y.
,
Hosokawa
,
M.
,
Murata
,
S.
, and
Nomura
,
M.
,
1999
, “
Structure and Reactivity of Petroleum-Derived Asphaltene
,”
Energy Fuels
,
13
(
2
), pp.
287
296
.
14.
Begon
,
V.
,
Suelves
,
I.
,
Islas
,
C. A.
,
Millan
,
M.
,
Dubau
,
C.
,
Lazaro
,
M. J.
,
Law
,
R. V.
,
Herod
,
A. A.
,
Dugwell
,
D. R.
, and
Kandiyoti
,
R.
,
2003
, “
Comparison of the Quaternary Aromatic Carbon Contents of a Coal, a Coal Extract, and Its Hydrocracking Products by NMR Methods
,”
Energy Fuels
,
17
(
6
), pp.
1616
1629
.
15.
Sheremata
,
J. M.
,
Gray
,
M. R.
,
Dettman
,
H. D.
, and
McCaffrey
,
W. C.
,
2004
, “
Quantitative Molecular Representation and Sequential Optimization of Athabasca Asphaltenes
,”
Energy Fuels
,
18
(
5
), pp.
1377
1384
.
16.
Trejo
,
F.
,
Ancheyta
,
J.
,
Morgan
,
T. J.
,
Herod
,
A. A.
, and
Kandiyoti
,
R.
,
2007
, “
Characterization of Asphaltenes From Hydrotreated Products by SEC, LDMS, MALDI, NMR, and XRD
,”
Energy Fuels
,
21
(
4
), pp.
2121
2128
.
17.
Andrews
,
A. B.
,
Edwards
,
J. C.
,
Pomerantz
,
A. E.
,
Mullins
,
O. C.
,
Nordlund
,
D.
, and
Norinaga
,
K.
,
2011
, “
Comparison of Coal-Derived and Petroleum Asphaltenes by 13C Nuclear Magnetic Resonance, DEPT, and XRS
,”
Energy Fuels
,
25
(
7
), pp.
3068
3076
.
18.
Sanchez-Minero
,
F.
,
Ancheyta
,
J.
,
Silva-Oliver
,
G.
, and
Flores-Valle
,
S.
,
2013
, “
Predicting SARA Composition of Crude Oil by Means of NMR
,”
Fuel
,
110
, pp.
318
321
.
19.
Fergoug
,
T.
, and
Bouhadda
,
Y.
,
2014
, “
Determination of Hassi Messaoud Asphaltene Aromatic Structure From 1H & 13C NMR Analysis
,”
Fuel
,
115
, pp.
521
526
.
20.
Morgan
,
T.
,
Alvarez-Rodriguez
,
P.
,
George
,
A.
,
Herod
,
A.
, and
Kandiyoti
,
R.
,
2010
, “
Characterization of Maya Crude Oil Maltenes and Asphaltenes in Terms of Structural Parameters Calculated From Nuclear Magnetic Resonance (NMR) Spectroscopy and Laser Desorption–Mass Spectroscopy (LD–MS)
,”
Energy Fuels
,
24
(
7
), pp.
3977
3989
.
21.
Ostlund
,
J. A.
,
Wattana
,
P.
,
Nyden
,
M.
, and
Fogler
,
H. S.
,
2004
, “
Characterization of Fractionated Asphaltenes by UV-Vis and NMR Self-Diffusion Spectroscopy
,”
J. Colloid Interface Sci.
,
271
(
2
), pp.
372
380
.
22.
Buenrostro-Gonzalez
,
E.
,
Groenzin
,
H.
,
Lira-Galeana
,
C.
, and
Mullins
,
O. C.
,
2001
, “
The Overriding Chemical Principles That Define Asphaltenes
,”
Energy Fuels
,
15
(
4
), pp.
972
978
.
23.
Calemma
,
V.
,
Iwanski
,
P.
,
Nali
,
M.
,
Scotti
,
R.
, and
Montanari
,
L.
,
1995
, “
Structural Characterization of Asphaltenes of Different Origins
,”
Energy Fuels
,
9
(
2
), pp.
225
230
.
24.
Storm
,
D. A.
,
Edwards
,
J. C.
,
DeCanio
,
S. J.
, and
Sheu
,
E. Y.
,
1994
, “
Molecular Representations of Ratawi and Alaska North Slope Asphaltenes Based on Liquid-and Solid-State NMR
,”
Energy Fuels
,
8
(
3
), pp.
561
566
.
25.
Rafenomanantsoa
,
A.
,
Nicole
,
D.
,
Rubini
,
P.
, and
Lauer
,
J. C.
,
1994
, “
Structural Analysis by NMR and FIMS of the Tar-Sand Bitumen of Bemolanga (Malagasy)
,”
Energy Fuels
,
8
(
3
), pp.
618
628
.
26.
Dutta Majumdar
,
R.
,
Gerken
,
M.
,
Mikula
,
R.
, and
Hazendonk
,
P.
,
2013
, “
Validation of the Yen–Mullins Model of Athabasca Oil-Sands Asphaltenes Using Solution-State 1H NMR Relaxation and 2D HSQC Spectroscopy
,”
Energy Fuels
,
27
(
11
), pp.
6528
6537
.
27.
Buch
,
L.
,
Groenzin
,
H.
,
Buenrostro-Gonzalez
,
E.
,
Andersen
,
S. I.
,
Lira-Galeana
,
C.
, and
Mullins
,
O. C.
,
2003
, “
Molecular Size of Asphaltene Fractions Obtained From Residuum Hydrotreatment
,”
Fuel
,
82
(
9
), pp.
1075
1084
.
28.
Yoshida
,
T.
,
Maekawa
,
Y.
,
Uchino
,
H.
, and
Yokoyama
,
S.
,
1980
, “
Derivation of Structural Parameters for Coal-Derived Oil by Carbon-13 Nuclear Magnetic Resonance Spectrometry
,”
Anal. Chem.
,
52
(
6
), pp.
817
820
.
29.
Gillet
,
S.
,
Delpuech
,
J.
,
Valentin
,
P.
, and
Escalier
,
J.
,
1980
, “
Optimum Conditions for Crude Oil and Petroleum Product Analysis by Carbon-13 Nuclear Magnetic Resonance Spectrometry
,”
Anal. Chem.
,
52
(
6
), pp.
813
817
.
30.
Karas
,
M.
, and
Hillenkamp
,
F.
,
1988
, “
Laser Desorption Ionization of Proteins With Molecular Masses Exceeding 10,000 Daltons
,”
Anal. Chem.
,
60
(
20
), pp.
2299
2301
.
31.
Pantoja
,
P. A.
,
Mendes
,
M. A.
, and
Nascimento
,
C. A. O.
,
2013
, “
Contribution of Mass Spectrometry in Assessing Quality of Petroleum Fractions: The Use of Mass Spectrometry for Assessing Asphaltenes
,”
J. Pet. Sci. Eng.
,
109
, pp.
198
205
.
32.
Martínez-Haya
,
B.
,
Hortal
,
A. R.
,
Hurtado
,
P.
,
Lobato
,
M. D.
, and
Pedrosa
,
J. M.
,
2007
, “
Laser Desorption/Ionization Determination of Molecular Weight Distributions of Polyaromatic Carbonaceous Compounds and Their Aggregates
,”
J. Mass Spectrom.
,
42
(
6
), pp.
701
713
.
33.
Apicella
,
B.
,
Carpentieri
,
A.
,
Alfè
,
M.
,
Barbella
,
R.
,
Tregrossi
,
A.
,
Pucci
,
P.
, and
Ciajolo
,
A.
,
2007
, “
Mass Spectrometric Analysis of Large PAH in a Fuel-Rich Ethylene Flame
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
547
553
.
34.
Rizzi
,
A.
,
Cosmina
,
P.
,
Flego
,
C.
,
Montanari
,
L.
,
Seraglia
,
R.
, and
Traldi
,
P.
,
2006
, “
Laser Desorption/Ionization Techniques in the Characterization of High Molecular Weight Oil Fractions—Part 1: Asphaltenes
,”
J. Mass Spectrom.
,
41
(
9
), pp.
1232
1241
.
35.
Acevedo
,
S.
,
Gutierrez
,
L. B.
,
Negrin
,
G.
,
Pereira
,
J. C.
,
Mendez
,
B.
,
Delolme
,
F.
,
Dessalces
,
G.
, and
Broseta
,
D.
,
2005
, “
Molecular Weight of Petroleum Asphaltenes: A Comparison Between Mass Spectrometry and Vapor Pressure Osmometry
,”
Energy Fuels
,
19
(
4
), pp.
1548
1560
.
36.
Tanaka
,
R.
,
Sato
,
S.
,
Takanohashi
,
T.
,
Hunt
,
J. E.
, and
Winans
,
R. E.
,
2004
, “
Analysis of the Molecular Weight Distribution of Petroleum Asphaltenes Using Laser Desorption-Mass Spectrometry
,”
Energy Fuels
,
18
(
5
), pp.
1405
1413
.
37.
Hortal
,
A. R.
,
Hurtado
,
P.
,
Martínez-Haya
,
B.
, and
Mullins
,
O. C.
,
2007
, “
Molecular-Weight Distributions of Coal and Petroleum Asphaltenes From Laser Desorption/Ionization Experiments
,”
Energy Fuels
,
21
(
5
), pp.
2863
2868
.
38.
Hortal
,
A. R.
,
Martínez-Haya
,
B.
,
Lobato
,
M. D.
,
Pedrosa
,
J. M.
, and
Lago
,
S.
,
2006
, “
On the Determination of Molecular Weight Distributions of Asphaltenes and Their Aggregates in Laser Desorption Ionization Experiments
,”
J. Mass Spectrom.
,
41
(
7
), pp.
960
968
.
39.
Pomerantz
,
A. E.
,
Hammond
,
M. R.
,
Morrow
,
A. L.
,
Mullins
,
O. C.
, and
Zare
,
R. N.
,
2008
, “
Two-Step Laser Mass Spectrometry of Asphaltenes
,”
J. Am. Chem. Soc.
,
130
(
23
), pp.
7216
7217
.
40.
Luo
,
P.
,
Wang
,
X.
, and
Gu
,
Y.
,
2010
, “
Characterization of Asphaltenes Precipitated With Three Light Alkanes Under Different Experimental Conditions
,”
Fluid Phase Equilib.
,
291
(
2
), pp.
103
110
.
41.
Brown
,
J. K.
, and
Ladner
,
W. R.
,
1960
, “
A Study of the Hydrogen Distribution in Coal-Like Materials by High-Resolution Nuclear Magnetic Resonance Spectroscopy—2: A Comparison With Infra-Red Measurement and the Conversion to Carbon Structure
,”
Fuel
,
39
, pp.
87
96
.
42.
Knight
,
S. A.
,
1967
, “
Analysis of Aromatic Petroleum Fractions by Means of Absorption Mode Carbon-13 NMR Spectroscopy
,”
Chem. Ind.
,
11
, pp.
1920
1923
.
43.
Doddrell
,
D. M.
,
Pegg
,
D. T.
, and
Bendall
,
M. R.
,
1982
, “
Distortionless Enhancement of NMR Signals by Polarization Transfer
,”
J. Magn. Reson. (1969)
,
48
(
2
), pp.
323
327
.
44.
Friebolin
,
H.
,
1991
,
Basic One-and Two-Dimensional NMR Spectroscopy
,
Wiley VCH Weinheim
, Germany.
45.
Solum
,
M. S.
,
Pugmire
,
R. J.
, and
Grant
,
D. M.
,
1989
, “
Carbon-13 Solid-State NMR of Argonne-Premium Coals
,”
Energy Fuels
,
3
(
2
), pp.
187
193
.
46.
Mullins
,
O. C.
,
Sabbah
,
H.
,
Eyssautier
,
J.
,
Pomerantz
,
A. E.
,
Barre
,
L.
,
Andrews
,
A. B.
,
Ruiz-Morales
,
Y.
,
Mostowfi
,
F.
,
McFarlane
,
R.
,
Goual
,
L.
,
Lepkowicz
,
R.
,
Cooper
,
T.
,
Orbulescu
,
J.
,
Leblanc
,
R. M.
,
Edwards
,
J.
, and
Zare
,
R. N.
,
2012
, “
Advances in Asphaltene Science and the Yen–Mullins Model
,”
Energy Fuels
,
26
(
7
), pp.
3986
4003
.
47.
Mullins
,
O. C.
,
2010
, “
The Modified Yen Model
,”
Energy Fuels
,
24
(
4
), pp.
2179
2207
.
48.
Groenzin
,
H.
, and
Mullins
,
O. C.
,
2000
, “
Molecular Size and Structure of Asphaltenes From Various Sources
,”
Energy Fuels
,
14
(
3
), pp.
677
684
.
49.
Groenzin
,
H.
, and
Mullins
,
O. C.
,
1999
, “
Asphaltene Molecular Size and Structure
,”
J. Phys. Chem. A
,
103
(
50
), pp.
11237
11245
.
50.
Murgich
,
J.
,
2002
, “
Intermolecular Forces in Aggregates of Asphaltenes and Resins
,”
Pet. Sci. Technol.
,
20
(
9–10
), pp.
983
997
.
51.
Murgich
,
J.
,
Rodríguez
,
J.
, and
Aray
,
Y.
,
1996
, “
Molecular Recognition and Molecular Mechanics of Micelles of Some Model Asphaltenes and Resins
,”
Energy Fuels
,
10
(
1
), pp.
68
76
.
52.
Foster
,
R.
,
1974
, “
Organic Charge Transfer Complexes, 1969
,”
Molecular Complexes
, Vol.
73
,
R.
Foster
, ed.,
Academic Press
,
New York
, pp.
1
2
.
53.
Ruiz-Morales
,
Y.
, and
Mullins
,
O. C.
,
2007
, “
Polycyclic Aromatic Hydrocarbons of Asphaltenes Analyzed by Molecular Orbital Calculations With Optical Spectroscopy
,”
Energy Fuels
,
21
(
1
), pp.
256
265
.
54.
Abraham
,
R. J.
,
Canton
,
M.
, and
Griffiths
,
L.
,
2001
, “
Proton Chemical Shifts in NMR—Part 17: Chemical Shifts in Alkenes and Anisotropic and Steric Effects of the Double Bond
,”
Magn. Reson. Chem.
,
39
(
8
), pp.
421
431
.
55.
Dhami
,
K. S.
, and
Stothers
,
J. B.
,
1965
, “
13C NMR Studies—Part V: Carbon-13 Spectra of Some Substituted Styrenes
,”
Can. J. Chem.
,
43
(
2
), pp.
510
520
.
56.
Mullins
,
O. C.
,
2011
, “
The Asphaltenes
,”
Annual Review of Analytical Chemistry
, Vol
4
, pp.
393
418
.
57.
Sabbah
,
H.
,
Morrow
,
A. L.
,
Pomerantz
,
A. E.
, and
Zare
,
R. N.
,
2011
, “
Evidence for Island Structures as the Dominant Architecture of Asphaltenes
,”
Energy Fuels
,
25
(
4
), pp.
1597
1604
.
58.
Hurt
,
M. R.
,
Borton
,
D. J.
,
Choi
,
H. J.
, and
Kenttaümaa
,
H. I.
,
2013
, “
Comparison of the Structures of Molecules in Coal and Petroleum Asphaltenes by Using Mass Spectrometry
,”
Energy Fuels
,
27
(
7
), pp.
3653
3658
.
You do not currently have access to this content.