Dual-fuel reactivity-controlled compression ignition (RCCI) combustion can yield high thermal efficiency and simultaneously low NOx and soot emissions. Although soot emissions from RCCI are very low, hydrocarbon (HC) emissions are high, potentially resulting in higher than desired total particulate matter (PM) mass and number caused by semivolatile species converting the particle phase upon primary dilution in the exhaust plume. Such high organic fraction PM is known to be highly sensitive to dilution conditions used when collecting samples on a filter or when measuring particle number using particle sizing instruments. In this study, PM emissions from a modified single-cylinder diesel engine operating in RCCI and conventional diesel combustion (CDC) modes were investigated under controlled dilution conditions. To investigate the effect of the fumigated fuel on the PM emissions, 150 proof hydrous ethanol and gasoline were used as low reactivity fuels. The data reveal that PM from RCCI combustion is more sensitive to the variation of dilution conditions than PM from single fuel conventional diesel combustion. RCCI PM primarily consisted of semivolatile organic compounds and a smaller amount of solid carbonaceous particles. The fumigated fuel had a significant effect on PM emissions' characteristics for RCCI combustion. Hydrous ethanol fueled RCCI PM contained a larger fraction of volatile materials and was more sensitive to the variation of dilution conditions compared to the gasoline fueled RCCI mode.

References

References
1.
Kittelson
,
D. B.
,
1998
, “
Engines and Nanoparticles: A Review
,”
J. Aerosol Sci.
,
29
(
5–6
), pp.
575
588
.
2.
Kittelson
,
D. B.
,
Graskow
,
B. R.
,
Wei
,
Q.
, and
Brear
,
F.
,
1998
, “
Diesel Exhaust Particle Size: Measurement Issues and Trends
,”
SAE
Technical Paper No. 980525.
3.
Hanson
,
R. M.
,
Kokjohn
,
S. L.
,
Splitter
,
D. A.
, and
Reitz
,
R. D.
,
2010
, “
An Experimental Investigation of Fuel Reactivity Controlled PCCI Combustion in a Heavy-Duty Engine
,”
SAE Int. J. Engines
,
3
(
1
), pp.
700
716
.
4.
Kokjohn
,
S. L.
,
Hanson
,
R. M.
,
Splitter
,
D. A.
, and
Reitz
,
R. D.
,
2011
, “
Fuel Reactivity Controlled Compression Ignition (RCCI) Combustion in Light- and Heavy-Duty Engines
,”
SAE Int. J. Engines
,
4
(
1
), pp.
360
374
.
5.
Splitter
,
D. A.
,
Hanson
,
R. M.
,
Kokjohn
,
S. L.
, and
Reitz
,
R. D.
,
2011
, “
Reactivity Controlled Compression Ignition (RCCI) Heavy-Duty Engine Operation at Mid-and High-Loads With Conventional and Alternative Fuels
,”
SAE
Technical Paper No. 2011-01-0363.
6.
Kokjohn
,
S. L.
,
Hanson
,
R. M.
,
Splitter
,
D. A.
, and
Reitz
,
R. D.
,
2011
, “
Fuel Reactivity Controlled Compression Ignition (RCCI): A Pathway to Controlled High-Efficiency Clean Combustion
,”
Int. J. Engine Res.
,
12
(
3
), pp.
209
226
.
7.
Hanson
,
R. M.
,
Kokjohn
,
S. L.
,
Splitter
,
D. A.
, and
Reitz
,
R. D.
,
2011
, “
Fuel Effects on Reactivity Controlled Compression Ignition (RCCI) Combustion at Low Load
,”
SAE Int. J. Engines
,
4
(
1
), pp.
394
411
.
8.
Wu
,
Y.
, and
Reitz
,
R. D.
,
2015
, “
Effects of Exhaust Gas Recirculation and Boost Pressure on Reactivity Controlled Compression Ignition Engine at High Load Operating Conditions
,”
ASME J. Energy Resour. Technol.
,
137
(
3
), p.
032210
.
9.
Ryan Walker
,
N.
,
Wissink
,
M. L.
,
DelVescovo
,
D. A.
, and
Reitz
,
R. D.
,
2015
, “
Natural Gas for High Load Dual-Fuel Reactivity Controlled Compression Ignition in Heavy-Duty Engines
,”
ASME J. Energy Resour. Technol.
,
137
(
4
), p.
042202
.
10.
Prikhodko
,
V. Y.
,
Curran
,
S. J.
,
Barone
,
T. L.
,
Lewis
,
S. A.
,
Storey
,
J. M.
,
Cho
,
K.
,
Wagner
,
R. M.
, and
Parks
,
J. E.
,
2011
, “
Diesel Oxidation Catalyst Control of Hydrocarbon Aerosols From Reactivity Controlled Compression Ignition Combustion
,”
ASME
Paper No. IMECE2011-64147.
11.
Kolodziej
,
C.
,
Wissink
,
M.
,
Splitter
,
D.
,
Hanson
,
R. M.
,
Reitz
,
R.
, and
Benajes
,
J.
,
2013
, “
Particle Size and Number Emissions From RCCI With Direct Injections of Two Fuels
,”
SAE
Technical Paper No. 2013-01-1661.
12.
Storey
,
J.
,
Curran
,
S. J.
,
Dempsey
,
A. B.
,
Lewis
,
S.
,
Walker
,
N. R.
,
Reitz
,
R.
, and
Wright
,
C.
,
2015
, “
The Contribution of Lubricant to the Formation of Particulate Matter With Reactivity Controlled Compression Ignition in Light-Duty Diesel Engines
,”
Emiss. Control Sci. Technol.
,
1
(
1
), pp.
64
79
.
13.
Abdul-Khalek
,
I. S.
,
Kittelson
,
D. B.
, and
Brear
,
F.
,
1999
, “
The Influence of Dilution Conditions on Diesel Exhaust Particle Size Distribution Measurements
,”
SAE
Technical Paper No. 1999-01-1142.
14.
Zhang
,
Y.
,
Ghandhi
,
J.
, and
Rothamer
,
D.
,
2014
, “
Comparison of Particulate Size Distributions From Advanced and Conventional Combustion—Part I: CDC, HCCI, and RCCI
,”
SAE Int. J. Engines
,
7
(
2
), pp.
820
834
.
15.
Fang
,
W.
,
Fang
,
J.
,
Kittelson
,
D. B.
, and
Northrop
,
W. F.
,
2014
, “
An Experimental Investigation of Reactivity-Controlled Compression Ignition Combustion in a Single-Cylinder Diesel Engine Using Hydrous Ethanol
,”
ASME J. Energy Resour. Technol.
,
137
(
3
), p.
031101
.
16.
Dempsey
,
A. B.
,
Das Adhikary
,
B.
,
Viswanathan
,
S.
, and
Reitz
,
R. D.
,
2012
, “
Reactivity Controlled Compression Ignition Using Premixed Hydrated Ethanol and Direct Injection Diesel
,”
ASME J. Eng. Gas Turbines Power
,
134
(
8
), p.
082806
.
17.
Flowers
,
D. L.
,
Aceves
,
S. M.
, and
Frias
,
J. M.
,
2007
, “
Improving Ethanol Life Cycle Energy Efficiency by Direct Utilization of Wet Ethanol in HCCI Engines
,”
ASME J. Energy Resour. Technol.
,
129
(
4
), pp.
332
337
.
18.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
,
New York
.
19.
Abdul-Khalek
,
I. S.
, and
Kittelson
,
D. B.
,
1995
, “
Real Time Measurement of Volatile and Solid Exhaust Particles Using a Catalytic Stripper
,”
SAE
Technical Paper No. 950236.
20.
Fang
,
W.
,
Huang
,
B.
,
Kittelson
,
D. B.
, and
Northrop
,
W. F.
,
2014
, “
Dual-Fuel Diesel Engine Combustion With Hydrogen, Gasoline and Ethanol as Fumigants: Effect of Diesel Injection Timing
,”
ASME J. Eng. Gas Turbines Power
,
136
(
8
), p.
081502
.
21.
Mehl
,
M.
,
Pitz
,
W.
,
Sarathy
,
M.
,
Yang
,
Y.
, and
Dec
,
J. E.
,
2012
, “
Detailed Kinetic Modeling of Conventional Gasoline at Highly Boosted Conditions and the Associated Intermediate Temperature Heat Release
,”
SAE
Technical Paper No. 2012-01-1109.
22.
Sjoberg
,
M.
, and
Dec
,
J. E.
,
2010
, “
Ethanol Autoignition Characteristics and HCCI Performance for Wide Ranges of Engine Speed, Load and Boost
,”
SAE Int. J. Engines
,
3
(
1
), pp.
84
106
.
23.
Franklin
,
L. M.
,
2010
, “
Effects of Homogeneous Charge Compression Ignition (HCCI) Control Strategies on Particulate Emissions of Ethanol Fuel
,”
Doctoral dissertation
, University of Minnesota, Minneapolis, MN.
You do not currently have access to this content.