In this paper, catalyzed pyrolysis of scrap tires was studied in order to identify the influence of catalysts on gas composition during the main thermal range of the decomposition process. The aim is related to gas fraction optimization in terms of yield, composition, and distribution during the pyrolysis process. This is an original work using for the first time powder catalysts (MgO, Al2O3, CaCO3, and zeolite ZSM-5) uniformly distributed on a single layer of oyster shells (OSs) particles. The catalyst/tires mass ratio was kept for all the tests at 1/30. Depending on used catalyst, pyrolysis products yields ranged from 39 to 42 wt.% for char, from 26 to 38 wt.% for oils, and from 16 to 30 wt.% for gas. Compared to the thermal pyrolysis, it was found that the liquid yield increases in the presence of MgO/OS, while the use of Al2O3/OS decreases it significantly. The gas yield grows in the presence of Al2O3/OS ranging from 24.6 wt.% (thermal pyrolysis) to 30.6 wt.%. On the other hand, ZSM-5/OS and CaCO3/OS did not bring significant changes in products yield, but there are considerable influences on the evolution of gas composition during the tires decomposition. Also, two important advantages of using these new catalytic systems are identified. These relate to the formation of gaseous species throughout the waste decomposition, thus harmonizing the calorific value for the entire thermal range, and the disappearance of heavy molecules in liquid fractions, simplifying or canceling further upgrading processes.

References

1.
Byström
,
J.
,
2012
, “
Eco Efficiency: A Path Towards Integrated Resource Management
,”
Waste Manage.
,
32
(
5
), pp.
797
798
.
2.
Eriksson
,
O.
,
Bisaillon
,
M.
,
Haraldsson
,
M.
, and
Sundberg
,
J.
,
2014
, “
Integrated Waste Management as a Mean to Promote Renewable Energy
,”
Renewable Energy
,
61
, pp.
38
42
.
3.
Rada
,
E. C.
,
Ragazzi
,
M.
,
Ionescu
,
G.
,
Merler
,
G.
,
Moedinger
,
F.
,
Raboni
,
M.
, and
Torretta
,
V.
,
2014
, “
Municipal Solid Waste Treatment by Integrated Solutions: Energy and Environmental Balances
,”
Energy Procedia
,
50
, pp.
1037
1044
.
4.
Torretta
,
V.
,
Ionescu
,
G.
,
Raboni
,
M.
, and
Merler
,
G.
,
2014
, “
The Mass and Energy Balance of an Integrated Solution for Municipal Solid Waste Treatment
,”
WIT Trans. Ecol. Environ.
,
180
, pp.
151
161
.
5.
ETRMA
,
2014
, “
European Tire and Rubber Industry—Statistics
,” European Tyre and Rubber Manufacturers' Association, Brussels Belgium, accessed, Feb. 20, 2014, http://www.etrma.org/uploads/Modules/Documentsmanager/20150408---statistics-booklet-2014-final2-(modified).pdf
6.
Antoniou
,
N.
, and
Zabaniotou
,
A.
,
2013
, “
Features of an Efficient and Environmentally Attractive Used Tires Pyrolysis With Energy and Material Recovery
,”
Renewable Sustainable Energy Rev.
,
20
, pp.
539
558
.
7.
Elbaba
,
I. E.
,
Wu
,
C.
, and
Williams
,
P. T.
,
2010
, “
Catalytic Pyrolysis-Gasification of Waste Tire and Tire Elastomers for Hydrogen Production
,”
Energy Fuels
,
24
, pp.
3928
3935
.
8.
Quek
,
A.
, and
Balasubramanian
,
R.
,
2013
, “
Liquefaction of Waste Tires by Pyrolysis for Oil and Chemicals: A Review
,”
J. Anal. Appl. Pyrolysis
,
101
, pp.
1
16
.
9.
Shah
,
J.
,
Jan
,
M. R.
, and
Mabood
,
F.
,
2009
, “
Recovery of Value-Added Products From the Catalytic Pyrolysis of Waste Tire
,”
Energy Convers. Manage.
,
50
(
4
), pp.
991
994
.
10.
Shen
,
B.
,
Wu
,
C.
,
Liang
,
C.
,
Guo
,
B.
, and
Wang
,
R.
,
2007
, “
Pyrolysis of Waste Tires: The Influence of USY Catalyst/Tire Ratio on Products
,”
J. Anal. Appl. Pyrolysis
,
78
(2), pp.
243
249
.
11.
Williams
,
P. T.
,
2013
, “
Pyrolysis of Waste Tires: A Review
,”
Waste Manage.
,
33
(
8
), pp.
1714
1728
.
12.
Williams
,
P. T.
, and
Brindle
,
A. J.
,
2002
, “
Catalytic Pyrolysis of Tires: Influence of Catalyst Temperature
,”
Fuel
,
81
(
18
), pp.
2425
2434
.
13.
Elbaba
,
I. F.
,
Chunfei
,
W.
, and
William
,
P. T.
,
2011
, “
Hydrogen Production From the Pyrolysis-Gasification of Waste Tires With a Nickel/Cerium Catalyst
,”
Int. J. Hydrogen Energy
,
36
(
11
), pp.
6628
6637
.
14.
Fernandez
,
A. M.
,
Barriocanal
,
C.
, and
Alvarez
,
R.
,
2012
, “
Pyrolysis of a Waste From the Grinding of Scrap Tires
,”
J. Hazard. Mater.
,
203–204
, pp.
236
243
.
15.
Huang
,
J.
,
Li
,
G.
,
He
,
W.
,
Xu
,
J.
,
Wang
,
H.
, and
Yang
,
L.
,
2012
, “
Energy Analysis of Tire Life Cycle
,”
J. Automot. Eng.
,
34
(
3
), pp.
277
281
.
16.
Kop
,
Y.
,
Genevois
,
M. E.
, and
Ulukan
,
H. Z.
,
2014
, “
End-of-Life Tires Recovery Method Selection by Using a Two Step Methodology
,”
J. Mult. Valued Logic Soft Comput.
,
22
(
4–6
), pp.
481
500
.
17.
Onenç
,
S.
,
Brebu
,
M.
,
Vasile
,
C.
, and
Yanik
,
J.
,
2012
, “
Co-Pyrolysis of Scrap Tires With Oily Wastes
,”
J. Anal. Appl. Pyrolysis
,
94
, pp.
184
189
.
18.
Aguado
,
R.
,
Arrizabalaga
,
A.
,
Arabiourrutia
,
M.
,
Lopez
,
G.
,
Bilbao
,
J.
, and
Olazar
,
M.
,
2014
, “
Principal Component Analysis for Kinetic Scheme Proposal in the Thermal and Catalytic Pyrolysis of Waste Tires
,”
Chem. Eng. Sci.
,
106
, pp.
9
17
.
19.
Bridgwater
,
A. V.
,
2012
, “
Upgrading Biomass Fast Pyrolysis Liquids
,”
Environ. Prog. Sustainable Energy
,
31
(
2
), pp.
261
268
.
20.
Martinez
,
J. D.
,
Puy
,
N.
,
Murillo
,
R.
,
Garcia
,
T.
,
Navarro
,
M. V.
, and
Mastral
,
A. M.
,
2013
, “
Waste Tire Pyrolysis: A Review
,”
Renewable Sustainable Energy Rev.
,
23
, pp.
179
213
.
21.
Grigiante
,
M.
,
Ischia
,
M.
,
Baratieri
,
M.
,
Dal Maschio
,
R.
, and
Ragazzi
,
M.
,
2010
, “
Pyrolysis Analysis and Solid Residue Stabilization of Polymers, Waste Tires, Spruce Sawdust and Sewage Sludge
,”
Waste Biomass Valorization
,
1
(
4
), pp.
381
393
.
22.
Elordi
,
G.
,
Lopez
,
G.
,
Aguado
,
R.
,
Olazar
,
M.
, and
Bilbao
,
J.
,
2007
, “
Catalytic Pyrolysis of High Density Polyethylene on a HZSM-5 Zeolite Catalyst in a Conical Spouted Bed Reactor
,”
Int. J. Chem. React. Eng.
,
5
(1).
23.
Kaminsky
,
W.
, and
Mennerich
,
C. J.
,
2001
, “
Pyrolysis of Synthetic Tire Rubber in a Fluidised-Bed Reactor to Yield 1,3-Butadiene, Styrene and Carbon Black
,”
J. Anal. Appl. Pyrolysis
,
58–59
, pp.
803
811
.
24.
William
,
P. T.
, and
Brindle
,
A. J.
,
2003
, “
Fluidised Bed Pyrolysis and Catalytic Pyrolysis of Scrap Tire
,”
Environ. Technol.
,
24
(
7
), pp.
921
929
.
25.
Ucar
,
S.
,
Karagoz
,
S.
,
Ozkan
,
A. R.
, and
Yanik
,
J.
,
2005
, “
Evaluation of Two Different Scrap Tires as Hydrocarbon Source by Pyrolysis
,”
Fuel
,
84
(14–15), pp.
1884
1892
.
26.
Conesa
,
J. A.
,
Marcilla
,
A.
,
Font
,
R.
, and
Caballero
,
J. A. J.
,
1997
, “
Kinetic Model for the Continuous Pyrolysis of Two Types of Polyethylene in a Fluidized Bed Reactor
,”
J. Anal. Appl. Pyrolysis
,
40–41
, pp.
419
431
.
27.
Ono
,
A.
,
Kurita
,
M.
,
Nagashima
,
T.
, and
Horio
,
M.
,
2001
, “
Evaluation of Waste Pyrolysis Characteristics in a Pressurized Fluidized Bed Reactor
,”
Waste Manage.
,
21
(
5
), pp.
451
456
.
28.
Dai
,
X.
,
Yin
,
X.
,
Wu
,
C.
,
Zhang
,
W.
, and
Chen
,
Y.
,
2001
, “
Pyrolysis of Waste Tires in a Circulating Fluidized-Bed Reactor
,”
Energy
,
26
(
4
), pp.
385
399
.
29.
Lopez
,
G.
,
Aguado
,
R.
,
Olazar
,
M.
,
Arabiourrutia
,
M.
, and
Bilbao
,
J.
,
2009
, “
Kinetics of Scrap Tire Pyrolysis Under Vacuum Conditions
,”
Waste Manage.
,
29
(
10
), pp.
2649
2655
.
30.
Roy
,
C.
,
Chaala
,
A.
, and
Darmstadt
,
H. J.
,
1999
, “
The Vacuum Pyrolysis of Used Tires: End-Uses for Oil and Carbon Black Products
,”
J. Anal. Appl. Pyrolysis
,
51
(
1–2
), pp.
201
221
.
31.
Roy
,
C.
,
Darmstadt
,
H.
,
Bellanal
,
B.
, and
Amen-Chen
,
C.
,
1997
, “
Characterization of Naphtha and Carbon Black Obtained by Vacuum Pyrolysis of Polyisoprene Rubber
,”
Fuel Process. Technol.
,
50
(
1
), pp.
87
103
.
32.
Zhang
,
X.
,
Wang
,
T.
,
Ma
,
L.
, and
Chang
,
J.
,
2008
, “
Vacuum Pyrolysis of Waste Tires With Basic Additives
,”
Waste Manage.
,
28
(
11
), pp.
2301
2310
.
33.
Diez
,
C.
,
Sanchez
,
M. E.
,
Haxaire
,
P.
,
Martinez
,
O.
, and
Moran
,
A. J.
,
2005
, “
Pyrolysis of Tires: A Comparison of the Results From a Fixed-Bed Laboratory Reactor and a Pilot Plant (Rotatory Reactor)
,”
J. Anal. Appl. Pyrolysis
,
74
(
1–2
), pp.
254
258
.
34.
Li
,
S. Q.
,
Yao
,
Q.
,
Chi
,
Y.
,
Yan
,
J. H.
, and
Cen
,
K. F.
,
2004
, “
Pilot-Scale Pyrolysis of Scrap Tires in a Continuous Rotary Kiln Reactor
,”
Ind. Eng. Chem. Res.
,
43
(
17
), pp.
5133
5145
.
35.
Atutxa
,
A.
,
Aguado
,
R.
,
Gayubo
,
A. G.
,
Olazar
,
M.
, and
Bilbao
,
J.
,
2005
, “
Kinetic Description of the Catalytic Pyrolysis of Biomass in a Conical Spouted Bed Reactor
,”
Energy Fuels
,
19
(
3
), pp.
765
774
.
36.
Laksmono
,
N.
,
Paraschiv
,
M.
,
Loubar
,
K.
, and
Tazerout
,
M.
,
2013
, “
Biodiesel Production From Biomass Gasification Tar Via Thermal/Catalytic Cracking
,”
Fuel Process. Technol.
,
106
, pp.
776
783
.
37.
Manos
,
G.
,
Garforth
,
A. A.
, and
Dwyer
,
J.
,
2000
, “
Catalytic Degradation of High-Density Polyethylene Over Different Zeolitic Structures
,”
Ind. Eng. Chem. Res.
,
39
(
5
), pp.
1198
1202
.
38.
Mrad
,
N.
,
Paraschiv
,
M.
,
Aloui
,
F.
,
Tazerout
,
M.
, and
Ben Nasrallah
,
S.
,
2013
, “
Liquid Hydrocarbon Fuels Product by Catalytic Cracking of Fish Oil Industrial Residues
,”
Int. J. Energy Res.
,
37
(
9
), pp.
1036
1043
.
39.
Paraschiv
,
M.
,
Kuncser
,
R.
,
Tazerout
,
M.
, and
Prisecaru
,
T.
,
2015
, “
New Energy Value Chain Through Pyrolysis of Hospital Plastic Waste
,”
Appl. Therm. Eng.
,
87
, pp.
424
433
.
40.
Olazar
,
M.
,
Arabiourrutia
,
M.
,
Lopez
,
G.
,
Aguado
,
R.
, and
Bilbao
,
J.
,
2008
, “
Effect of Acid Catalysts on Scrap Tire Pyrolysis Under Fast Heating Conditions
,”
J. Anal. Appl. Pyrolysis
,
82
(
2
), pp.
199
204
.
41.
Qu
,
W.
,
Zhou
,
Q.
,
Wang
,
Y.-Z.
,
Zhang
,
J.
,
Lan
,
W. W.
, and
Wu
,
Y. H.
,
2006
, “
Pyrolysis of Waste Tire on ZSM-5 Zeolite With Enhanced Catalytic Activities
,”
Polym. Degrad. Stab.
,
91
(
10
), pp.
2389
2395
42.
San Miguel
,
G.
,
Aguado
,
J.
,
Serrano
,
D. P.
, and
Escola
,
J. M.
,
2006
, “
Thermal and Catalytic Conversion of Used Tire Rubber and Its Polymeric Constituents Using Py-GC/MS
,”
Appl. Catal.
, B,
64
, pp.
209
219
.
43.
Shen
,
B.
,
Wu
,
C.
,
Wang
,
R.
,
Guo
,
B.
, and
Liang
,
C.
,
2007
, “
Pyrolysis of Waste Tires With Zeolite USY and ZSM-5 Catalysts
,”
Appl. Catal., B
,
73
(1–2), pp.
150
157
.
44.
Gyung
,
G.
,
Seung
,
J.
, and
Joo
,
S.
,
2016
, “
Non-Catalytic Pyrolysis of Scrap Tires Using a Newly Developed Two-Stage Pyrolyzer for the Production of a Pyrolysis Oil With a Low Sulfur Content
,”
Appl. Energy
,
170
, pp.
140
147
.
45.
Dũng
,
N. A.
,
Klaewkla
,
R.
,
Wongkasemjit
,
S.
, and
Jitkarnka
,
S.
,
2009
, “
Light Olefins and Light Oil Production From Catalytic Pyrolysis of Waste Tire
,”
J. Anal. Appl. Pyrolysis
,
86
(
2
), pp.
281
286
.
46.
Trongyong
,
S.
, and
Jitkarnka
,
S.
,
2015
, “
Enhanced Sulphur Removal From Tyre-Derived Oil Using Alumina Silicate MCM-48 With Pyrolysis of Waste Tyres
,”
Chem. Eng. Trans.
,
45
, pp.
679
684
.
47.
Liang
,
W.
,
Gábor
,
V.
,
Øyvind
,
S.
,
Tian
,
L.
,
Morten
,
G.
, and
Michael
,
J.
,
2016
, “
Combustion Characteristics of Biomass Charcoals Produced at Different Carbonization Conditions: A Kinetic Study
,”
Energy Fuels
,
30
(4), pp.
3186
3197
.
You do not currently have access to this content.