The present work shows that how the angle of an air swirler vane affects the combustion characteristics of liquid fuels such as flame temperature, radiation heat flux, combustion efficiency, and pollutants' emission. It finds out an optimum angle of vane based on flame characteristics. Three vanes with angles of 0 deg, 40 deg, and 80 deg which induced low and high-swirl intensities in air stream were investigated, and the combustion characteristics of flame were quantified. The flame temperature was measured by an S-type thermocouple, and a Testo 350 XL gas analyzer was used to determine the CO and NO pollutant concentrations. Also, gravity method was used to gauge the soot concentration along the furnace, and a SBG01 water cooled heat flux sensor determined the flame radiation. The results indicate that the angle of the swirler vane has significant effects on temperature, combustion efficiency, and NO and CO pollutants' emission. Most importantly, there is an optimum angle for the swirler vane. At the optimum angle, the optimum combination of the contact area and time maximizes the mixing rate of the inlet air and the fuel jet. Consequently, at the optimum angle, the mean temperature, radiation heat flux, and combustion efficiency are higher than at small and large swirl angles and soot, CO and NOx emissions are at their minimum states.

References

References
1.
Widiyanto
,
A.
,
Kato
,
S.
,
Maruyama
,
N.
, and
Kojima
,
Y.
,
2003
, “
Environmental Impact of Fossil Fuel Fired Co-Generation Plants Using a Numerically Standardized LCA Scheme
,”
ASME J. Energy Resour. Technol.
,
125
(
1
), pp.
9
16
.
2.
Curtis
,
L.
,
Rea
,
W.
,
Smith
,
P.
,
Fenyves
,
E.
, and
Pan
,
Y.
,
2006
, “
Adverse Health Effects of Outdoor Air Pollutants
,”
Environ. Int.
,
32
(
6
), pp.
815
830
.
3.
Vellini
,
M.
, and
Tonziello
,
J.
,
2011
, “
Hydrogen Use in an Urban District: Energy and Environmental Comparisons
,”
ASME J. Energy Resour. Technol.
,
132
(4), p.
042601
.
4.
Desmira
,
N.
,
Kitagawa
,
K.
, and
Gupta
,
A. K.
,
2013
, “
Hydroxyl and Nitric Oxide Distribution in Waste Rice Bran Biofuel-Octanol Flames
,”
ASME J. Energy Resour. Technol.
,
136
(
1
), p.
014501
.
5.
Ramanathan
,
V.
, and
Feng
,
Y.
,
2009
, “
Air Pollution, Greenhouse Gases and Climate Change: Global and Regional Perspectives
,”
Atmos. Environ.
,
43
(
1
), pp.
37
50
.
6.
Tak
,
S. H.
,
Park
,
S. K.
,
Kim
,
T. S.
,
Sohn
,
J. L.
, and
Lee
,
Y. D.
,
2010
, “
Performance Analyses of Oxy-Fuel Power Generation Systems Including CO2 Capture: Comparison of Two Cycles Using Different Recirculation Fluids
,”
J. Mech. Sci. Technol.
,
24
(
9
), pp.
1947
1954
.
7.
Leroux
,
B.
,
Lacas
,
F.
,
Recourt
,
P.
, and
Delabory
,
O.
,
2001
, “
Coupling Between Atomization and Combustion in Liquid Fuel-Oxygen Flames
,”
International Combustion Symposium
, Hi.
8.
Taki
,
H.
,
Asai
,
H.
,
Kitagawa
,
K.
,
Oyama
,
H.
, and
Gupta
,
A. K.
,
2014
, “
Laser-Induced Plasma Spectrometry With Chemical Seeding and Application to Flow Mixing Analysis in Methane–Air Flames
,”
ASME J. Energy Resour. Technol.
,
137
(
1
), p.
012202
.
9.
Gupta
,
A. K.
,
Lilley
,
D. G.
, and
Syred
,
N.
,
1984
,
Swirl Flows
,
Abacus Press
,
Kuala Lumpur, Malaysia
.
10.
Yilmaz
,
I.
,
2013
, “
Effect of Swirl Number on Combustion Characteristics in a Natural Gas Diffusion Flame
,”
ASME J. Energy Resour. Technol.
,
135
(
4
), p.
042204
.
11.
Masri
,
A. R.
,
Kalt
,
P.
,
AL-Abdel
,
Y. M.
, and
Barlow
,
R. S.
,
2007
, “
Turbulence–Chemistry Interactions in Non-Premixed Swirling Flames
,”
Combust. Theory Modell.
,
11
(
5
), pp.
653
73
.
12.
Najafi
,
A. F.
,
Mousavian
,
S. M.
, and
Amini
,
K.
,
2011
, “
Numerical Investigations on Swirl Intensity Decay Rate for Turbulent Swirling Flow in a Fixed Pipe
,”
Int. J. Mech. Sci.
,
53
(
10
), pp.
801
811
.
13.
Ishak
,
M. S. A.
,
Mohd Jaafar
,
M. N.
, and
Eldrainy
,
Y. A.
,
2009
, “
The Effect of Radial Swirl Generator on Reducing Emissions From Bio-Fuel Burner System
,”
Mod. Appl. Sci.
,
3
(6), pp.
45
51
.
14.
Habermehl
,
M.
,
Hees
,
J.
,
Maßmeyer
,
A.
,
Zabrodiec
,
D.
,
Hatzfeld
,
O.
, and
Kneer
,
R.
,
2016
, “
Comparison of Flame Stability Under Air and Oxy-Fuel Conditions for an Aerodynamically Stabilized Pulverized Coal Swirl Flame
,”
ASME J. Energy Resour. Technol.
,
138
(
4
), p.
042209
.
15.
Beer
,
J. M.
, and
Chigier
,
N. A.
,
2009
,
Combustion Aerodynamics
,
Applied Science Publishers
, London.
16.
Syred
,
N.
, and
Beer
,
J. M.
,
1974
, “
Combustion in Swirling Flows: A Review
,”
Combust. Flame
,
23
(
2
), pp.
143
201
.
17.
Gupta
,
A. K.
,
Lewis
,
M. J.
, and
Qi
,
S.
,
1998
, “
Effect of Swirl on Combustion Characteristics of Premixed Flames
,”
ASME J. Eng. Gas Turbines Power
,
120
(
3
), pp.
488
494
.
18.
Mestre
,
A.
,
1974
, “
Efficiency and Pollutant Formation Studies in a Swirling Flow Combustor
,”
Fluid Mechanics of Combustion
, J. L. Dussord, R. P. Lohmann, and E. M. Uram, ed.,
The American Society of Mechanical Engineers
,
New York
.
19.
Claypole
,
T. C.
, and
Syred
,
N.
,
1981
, “
The Effect of Swirl Burner Aerodynamics on NOx Formation
,”
Symp. (Int.) Combustion
,
18
(1), pp.
81
89
.
20.
Zhou
,
L.
,
Chen
,
X.
, and
Zhang
,
J.
,
2002
, “
Studies on the Effect of Swirl on NO Formation in Methane/Air Turbulent Combustion
,”
Proc. Combust. Inst.
,
29
(
2
), pp.
2235
2242
.
21.
Bonatesta
,
F.
,
La Rocca
,
A.
,
Shayler
,
P.
, and
Wahab
,
E.
,
2007
, “
The Influence of Swirl Ratio on Soot Quantity and Distribution in the Cylinder of a Diesel Engine
,”
Third European Combustion Meeting
(
ECM
).https://www.researchgate.net/profile/Antonino_La_Rocca/publication/267365704_The_Influence_of_Swirl_Ratio_on_Soot_Quantity_and_Distribution_in_the_Cylinder_of_a_Diesel_Engine/links/5463456b0cf2cb7e9da74f26.pdf
22.
Kroner
,
M.
,
Sattelmayer
,
T.
,
Fritz
,
J.
,
Kiesewetter
,
F.
, and
Hirsch
,
C. H.
,
2007
, “
Flame Propagation in Swirling Flows Effect of Local Extinction on the Combustion Induced Vortex Breakdown
,”
Combust. Sci. Technol.
,
179
(
7
), pp.
1385
1416
.
23.
Mohd Jaafar
,
M. N.
,
1999
, “
Emissions Reduction From Gas Burner System Applying Swirling Flows
,”
Malaysian Science and Technology Congress
, Sarawak, Malaysia.
24.
Radzi
,
M.
,
2000
, “
The Effect of Swirler Vane Angle in Reducing Emissions From Liquid Fuel Burner
,”
Sixth Asia Pasific International Symposium on Combustion and Energy Utilization
, Kuala Lumpur, Malaysia, pp.
483
488
.
25.
Drake
,
P.
, and
Hubard
,
E. H.
,
1963
, “
Effect of Air Swirl on the Completeness of Combustion
,”
J. Inst. Fuel
,
36
, p.
389
.
26.
Khelil
,
A.
,
Naji
,
H.
, and
Loukarfi
,
L.
,
2007
, “
Numerical Study of Swirling Confined Non-Premixed Flames
,”
Int. Rev. Mech. Eng.
,
6
, pp.
18
27
.https://hal.archives-ouvertes.fr/hal-00262229/
27.
Chan
,
C. K.
,
Lau
,
K. S.
,
Chin
,
W. K.
, and
Cheng
,
R. K.
,
1992
, “
Freely Propagating Open Premixed Turbulent Flames Stabilized by Swirl
,”
Proc. Combust. Inst.
,
24
(
1
), pp.
511
518
.
28.
Pourhoseini
,
S. H.
, and
Moghiman
,
M.
,
2014
, “
Experimental and Numerical Investigation Into Enhancing Radiation Characteristics of Natural-Gas Flame by Injection of Micro Kerosene Droplets
,”
J. Enhanced Heat Transfer
,
21
(
6
), pp.
407
423
.
29.
Augustine
,
C.
, and
Tester
,
J. W.
,
2009
, “
Hydrothermal Flames: From Phenomenological Experimental Demonstrations to Quantitive Understanding
,”
J. Supercrit. Fluids
,
47
(
3
), pp.
415
430
.
30.
Pourhoseini
,
S. H.
, and
Moghiman
,
M.
,
2015
, “
Effect of Pulverized Anthracite Coal Particles Injection on Thermal and Radiative Characteristics of Natural Gas Flame: An Experimental Study
,”
Fuel
,
140
, pp.
44
49
.
You do not currently have access to this content.