Intermittency of sustainable energy or waste heat availability calls for energy storage systems such as thermal batteries. Thermochemical batteries based on a reversible solid–gas (MgCl2–NH3) reactions and NH3 liquid–gas phase change are of specific interest since the kinetics of absorption are fast and the heat transfer rates for liquid–vapor phase change are high. Thus, a thermochemical battery based on reversible reaction between magnesium chloride and ammonia was studied. Two-dimensional experimental studies were conducted on a reactor in which temperature profiles within the solid matrix and pressure and flow rates of gas were obtained during discharging processes. A numerical model based on heat and mass transfer within the salt and salt–gas reactions was developed to simulate the NH3 absorption processes within the solid matrix, and the results were compared with experimental data to determine dominant heat and mass transfer processes within the salt. It is shown that for high permeability salt beds, the reactor uniformly adsorbs gaseous ammonia until the bed reaches the equilibrium temperature, then adsorbs gas near the cooled boundaries as the reaction front moves inward. In that mode, the heat transfer is the dominant factor in determining reaction rates.

References

References
1.
Gardie
,
P.
, and
Goetz
,
V.
,
1995
, “
Thermal Energy Storage System by Solid Absorption for Electric Automobile Heating and Air-Conditioning
,”
SAE
Technical Paper No. 950017.
2.
Li
,
T. X.
,
Wang
,
R. Z.
,
Oliveira
,
R. G.
,
Kiplagat
,
J. K.
, and
Wang
,
L. W.
,
2009
, “
A Combined Double-Way Chemisorption Refrigeration Cycle Based on Adsorption and Resorption Processes
,”
Int. J. Refrig.
,
32
(
1
), pp.
47
57
.
3.
Neveu
,
P.
, and
Castaing
,
J.
,
1993
, “
Solid-Gas Chemical Heat Pumps: Field of Application and Performance of the Internal Heat of Reaction Recovery Process
,”
Heat Recovery Syst. CHP
,
13
(
3
), pp.
233
251
.
4.
Li
,
J.
,
Fan
,
P.
,
Zak Fang
,
Z.
, and
Zhou
,
C.
,
2014
, “
Kinetics of Isothermal Hydrogenation of Magnesium With TiH2 Additives
,”
Int. J. Hydrogen Energy
,
39
(
14
), pp.
7373
7381
.
5.
McClaine
,
A. W.
,
Brown
,
K.
, and
Bowen
,
D. D. G.
,
2015
, “
Magnesium Hydride Slurry: A Better Answer to Hydrogen Storage
,”
J. Energy Resour. Technol.
,
137
(
6
), p.
061201
.
6.
van der Pal
,
M.
,
de Boer
,
R.
, and
Veldhuis
,
J.
,
2013
, “
Experimental Setup for Determining Ammonia-Salt Adsorption and Desorption Behavior Under Typical Heat Pump Conditions: Experimental Results
,” ECN Biomass and Energy Efficiency,
Paper No. IMPRES2013-084
.
7.
Haije
,
W. G.
,
Veldhuis
,
J. B. J.
,
Smeding
,
S. F.
, and
Grisel
,
R. J. H.
,
2007
, “
Solid/Vapour Sorption Heat Transformer: Design and Performance
,”
Appl. Therm. Eng.
,
27
(
8–9
), pp.
1371
1376
.
8.
Bao
,
H.
,
Wang
,
Y.
, and
Roskilly
,
A. P.
,
2014
, “
Modelling of a Chemisorption Refrigeration and Power Cogeneration System
,”
Appl. Energy
,
119
, pp.
351
362
.
9.
Udell
,
K. S.
,
Kekelia
,
B.
,
Fan
,
P.
,
Zhou
,
C.
, and
Fang
,
Z.
,
2015
, “
Performance of a Multi-Cell MgCl2/NH3 Thermo-Chemical Battery During Recharge and Operation
,”
ASME
Paper No. ES2015-49508.
10.
Klerke
,
A.
,
Christensen
,
C. H.
,
Nørskov
,
J. K.
, and
Vegge
,
T.
,
2008
, “
Ammonia for Hydrogen Storage: Challenges and Opportunities
,”
J. Mater. Chem.
,
18
(
20
), pp.
2304
2310
.
11.
Sørensen
,
R. Z.
,
Hummelshøj
,
J. S.
,
Klerke
,
A.
,
Reves
,
J. B.
,
Vegge
,
T.
,
Nørskov
,
J. K.
, and
Christensen
,
C. H.
,
2008
, “
Indirect, Reversible High-Density Hydrogen Storage in Compact Metal Ammine Salts
,”
J. Am. Chem. Soc.
,
130
(
27
), pp.
8660
8668
.
12.
Christensen
,
C. H.
,
Sørensen
,
R. Z.
,
Johannessen
,
T.
,
Quaade
,
U. J.
,
Honkala
,
K.
,
Elmøe
,
T. D.
,
Køhler
,
R.
, and
Nørskov
,
J. K.
,
2005
, “
Metal Ammine Complexes for Hydrogen Storage
,”
J. Mater. Chem.
,
15
(
38
), pp.
4106
4108
.
13.
Hong
,
H.
,
Liu
,
Q.
, and
Jin
,
H.
,
2009
, “
Solar Hydrogen Production Integrating Low-Grade Solar Thermal Energy and Methanol Steam Reforming
,”
J. Energy Resour. Technol.
,
131
(
1
), p.
012601
.
14.
Berry
,
G. D.
, and
Aceves
,
S. M.
,
2005
, “
The Case for Hydrogen in a Carbon Constrained World
,”
J. Energy Resour. Technol.
,
127
(
2
), pp.
89
94
.
15.
Lu
,
H.
, and
Mazet
,
N.
,
1999
, “
Mass-Transfer Parameters in Gas-Solid Reactive Media to Identify Permeability of IMPEX
,”
AIChE J.
,
45
(
11
), pp.
2444
2453
.
16.
Huang
,
H.
,
Wu
,
G.
,
Yang
,
J.
,
Dai
,
Y.
,
Yuan
,
W.
, and
Lu
,
H.
,
2004
, “
Modeling of Gas–Solid Chemisorption in Chemical Heat Pumps
,”
Sep. Purif. Technol.
,
34
(
1–3
), pp.
191
200
.
17.
Lu
,
H.
,
Mazet
,
N.
, and
Spinner
,
B.
,
1996
, “
Modelling of Gas-Solid Reaction—Coupling of Heat and Mass Transfer With Chemical Reaction
,”
Chem. Eng. Sci.
,
51
(
15
), pp.
3829
3845
.
18.
Han
,
J. H.
,
Lee
,
K.
,
Kim
,
D. H.
, and
Kim
,
H.
,
2000
, “
Transformation Analysis of Thermochemical Reactor Based on Thermophysical Properties of Graphite–MnCl2 Complex
,”
Ind. Eng. Chem. Res.
,
39
(
11
), pp.
4127
4139
.
19.
Dutour
,
S.
,
Mazet
,
N.
,
Joly
,
J. L.
, and
Platel
,
V.
,
2005
, “
Modeling of Heat and Mass Transfer Coupling With Gas–Solid Reaction in a Sorption Heat Pump Cooled by a Two-Phase Closed Thermosyphon
,”
Chem. Eng. Sci.
,
60
(
15
), pp.
4093
4104
.
20.
Kekelia
,
B.
,
2013
, “
Heat Transfer to and From a Reversible Thermosiphon Placed in Porous Media
,”
Ph.D. dissertation
, University of Utah, Salt Lake City, UT.
21.
Elmøe
,
T. D.
,
Sørensen
,
R. Z.
,
Quaade
,
U.
,
Christensen
,
C. H.
,
Nørskov
,
J. K.
, and
Johannessen
,
T.
,
2006
, “
A High-Density Ammonia Storage/Delivery System Based on Mg(NH3)6Cl2 for SCR–DeNOx in Vehicles
,”
Chem. Eng. Sci.
,
61
(
8
), pp.
2618
2625
.
22.
Leineweber
,
A.
,
Friedriszik
,
M. W.
, and
Jacobs
,
H.
,
1999
, “
Preparation and Crystal Structures of Mg(NH3)2Cl2, Mg(NH3)2Br2, and Mg(NH3)2I2
,”
J. Solid State Chem.
,
147
(
1
), pp.
229
234
.
23.
Quintero
,
L. R.
,
1981
, “
On the Thermodynamic Properties of Hydrates and Ammines of Magnesium Chloride
,”
Master's thesis
, McGill University, Montreal, QC.
24.
Goetz
,
V.
, and
Marty
,
A.
,
1992
, “
A Model for Reversible Solid-Gas Reactions Submitted to Temperature and Pressure Constraints: Simulation of the Rate of Reaction in Solid-Gas Reactor Used as Chemical Heat Pump
,”
Chem. Eng. Sci.
,
47
(
17–18
), pp.
4445
4454
.
25.
Weller
,
H. G.
,
Tabor
,
G.
,
Jasak
,
H.
, and
Fureby
,
C.
,
1998
, “
A Tensorial Approach to Computational Continuum Mechanics Using Object-Oriented Techniques
,”
Comput. Phys.
,
12
(
6
), pp.
620
631
.
26.
Song
,
X. F.
,
Wang
,
J.
,
Wang
,
X. T.
, and
Yu
,
J. G.
,
2005
, “Preparation of Anhydrous Magnesium Chloride From MgCl2·6H2O—II: Thermal Decomposition Mechanism of the Intermediate Product,”
Mater. Sci. Forum
,
488–489
, pp.
61
64
.
27.
Zhang
,
Q.
,
Pan
,
L.
,
Zhou
,
H.
,
Yuan
,
J.
,
Li
,
B.
,
Sun
,
Y.
, and
Zhou
,
B.
,
2009
, “
Investigation of Thermal Decomposition of Hexammoniate Magnesium Chloride by TG-DTA and DSC
,”
J. Salt Chem. Ind.
,
38
(
5
), pp.
20
25
.
28.
Bevers
,
E. R. T.
,
Oonk
,
H. A. J.
,
Haije
,
W. G.
, and
van Ekeren
,
P. J.
,
2007
, “
Investigation of Thermodynamic Properties of Magnesium Chloride Amines by HPDSC and TG
,”
J. Therm. Anal. Calorim.
,
90
(
3
), pp.
923
929
.
29.
Long
,
G.
,
Ma
,
P.
,
Wu
,
Z.
,
Li
,
M.
, and
Chu
,
M.
,
2004
, “
Investigation of Thermal Decomposition of MgCl2 Hexammoniate and MgCl2 Biglycollate Biammoniate by DTA–TG, XRD and Chemical Analysis
,”
Thermochim. Acta
,
412
(
1–2
), pp.
149
153
.
30.
Zhu
,
H.
,
Gu
,
X.
,
Yao
,
K.
,
Gao
,
L.
, and
Chen
,
J.
,
2009
, “
Large-Scale Synthesis of MgCl2·6NH3 as an Ammonia Storage Material
,”
Ind. Eng. Chem. Res.
,
48
(
11
), pp.
5317
5320
.
31.
Kubota
,
M.
,
Matsuo
,
K.
,
Yamanouchi
,
R.
, and
Matsuda
,
H.
,
2014
, “
Absorption and Desorption Characteristics of NH3 With Metal Chlorides for Ammonia Storage
,”
J. Chem. Eng. Jpn.
,
47
(
7
), pp.
542
548
.
You do not currently have access to this content.