In this work, for the first time, an energy harvester based on the nonlinear dynamical response of a parametrically excited cantilever beam in contact with mechanical stoppers has been fabricated and tested; a 145% increase in the bandwidth at which energy can be effectively harvested has been observed. Experimental and theoretical investigations have been performed in order to assess the increased operating bandwidth of the energy harvester fabricated; for the experimental investigations, an electrodynamic shaker connected to a shaking table has been used to parametrically stimulate the energy harvesting device. Results showed that the parametric energy harvester without stoppers displayed a weak softening-type nonlinear response; however, with the addition of mechanical stoppers the energy harvester displayed a strong hardening-type nonlinear response which is ideal for capturing kinetic energy over larger bandwidths. The addition of mechanical stoppers on a parametrically excited cantilever beam has significant qualitative and quantitative effects on the nonlinear parametric energy harvesting; the energy harvesting bandwidth was increased in the range of 35–145% by adjusting the stoppers.

References

References
1.
Franco
,
J. A.
,
Jauregui
,
J. C.
, and
Toledano-Ayala
,
M.
,
2015
, “
Optimizing Wind Turbine Efficiency by Deformable Structures in Smart Blades
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051206
.
2.
Ghiassi-Farrokhfal
,
Y.
,
Keshav
,
S.
,
Rosenberg
,
C.
, and
Ciucu
,
F.
,
2015
, “
Solar Power Shaping: An Analytical Approach
,”
IEEE Trans. Sustainable Energy
,
6
(
1
), pp.
162
170
.
3.
Wong
,
K. V.
, and
Tan
,
N.
,
2015
, “
Feasibility of Using More Geothermal Energy to Generate Electricity
,”
ASME J. Energy Resour. Technol.
,
137
(
4
), p.
041201
.
4.
Tummuru
,
N. R.
,
Mishra
,
M. K.
, and
Srinivas
,
S.
,
2015
, “
Dynamic Energy Management of Hybrid Energy Storage System With High-Gain PV Converter
,”
IEEE Trans. Energy Convers.
,
30
(
1
), pp.
150
160
.
5.
Tianpei
,
Z.
, and
Wei
,
S.
,
2014
, “
Optimization of Battery-Supercapacitor Hybrid Energy Storage Station in Wind/Solar Generation System
,”
IEEE Trans. Sustainable Energy
,
5
(
2
), pp.
408
415
.
6.
Tao
,
K.
,
Lye
,
S. W.
,
Miao
,
J.
, and
Hu
,
X.
,
2015
, “
Design and Implementation of an Out-of-Plane Electrostatic Vibration Energy Harvester With Dual-Charged Electret Plates
,”
Microelectron. Eng.
,
135
, pp.
32
37
.
7.
Bu
,
L.
,
Wu
,
X.
,
Wang
,
X.
, and
Liu
,
L.
,
2013
, “
Non-Resonant Electrostatic Energy Harvester for Wideband Applications
,”
IET Micro Nano Lett.
,
8
(
3
), pp.
135
137
.
8.
Westby
,
E. R.
, and
Halvorsen
,
E.
,
2012
, “
Design and Modeling of a Patterned-Electret-Based Energy Harvester for Tire Pressure Monitoring Systems
,”
IEEE/ASME Trans. Mechatronics
,
17
(
5
), pp.
995
1005
.
9.
Tvedt
,
L. G. W.
,
Son
,
N. D.
, and
Halvorsen
,
E.
,
2010
, “
Nonlinear Behavior of an Electrostatic Energy Harvester Under Wide and Narrowband Excitation
,”
J. Microelectromech. Syst.
,
19
(
2
), pp.
305
316
.
10.
Torres
,
E. O.
, and
Rincon-Mora
,
G. A.
,
2009
, “
Electrostatic Energy-Harvesting and Battery-Charging CMOS System Prototype
,”
IEEE Trans. Circuits Syst. I: Regular Pap.
,
56
(
9
), pp.
1938
1948
.
11.
Yuji
,
S.
,
Daigo
,
M.
,
Masato
,
E.
, and
Makoto
,
H.
,
2010
, “
A MEMS Electret Generator With Electrostatic Levitation for Vibration-Driven Energy-Harvesting Applications
,”
J. Micromech. Microeng.
,
20
(
10
), p.
104002
.
12.
Nguyen
,
S. D.
, and
Halvorsen
,
E.
,
2011
, “
Nonlinear Springs for Bandwidth-Tolerant Vibration Energy Harvesting
,”
J. Microelectromech. Syst.
,
20
(
6
), pp.
1225
1227
.
13.
Anton
,
S. R.
, and
Sodano
,
H. A.
,
2007
, “
A Review of Power Harvesting Using Piezoelectric Materials (2003–2006)
,”
Smart Mater. Struct.
,
16
(
3
), pp. R1–R21.
14.
Renno
,
J. M.
,
Daqaq
,
M. F.
, and
Inman
,
D. J.
,
2009
, “
On the Optimal Energy Harvesting From a Vibration Source
,”
J. Sound Vib.
,
320
(
1–2
), pp.
386
405
.
15.
Abdelkefi
,
A.
,
Barsallo
,
N.
,
Tang
,
L.
,
Yang
,
Y.
, and
Hajj
,
M. R.
,
2014
, “
Modeling, Validation, and Performance of Low-Frequency Piezoelectric Energy Harvesters
,”
J. Intell. Mater. Syst. Struct.
,
25
(
12
), pp.
1429
1444
.
16.
Khameneifar
,
F.
,
Arzanpour
,
S.
, and
Moallem
,
M.
,
2013
, “
A Piezoelectric Energy Harvester for Rotary Motion Applications: Design and Experiments
,”
IEEE/ASME Trans. Mechatronics
,
18
(
5
), pp.
1527
1534
.
17.
Stanton
,
S. C.
,
McGehee
,
C. C.
, and
Mann
,
B. P.
,
2009
, “
Reversible Hysteresis for Broadband Magnetopiezoelastic Energy Harvesting
,”
Appl. Phys. Lett.
,
95
(
17
), p.
174103
.
18.
Bonello
,
P.
, and
Rafique
,
S.
,
2010
, “
Modeling and Analysis of Piezoelectric Energy Harvesting Beams Using the Dynamic Stiffness and Analytical Modal Analysis Methods
,”
ASME J. Vib. Acoust.
,
133
(
1
), p.
011009
.
19.
Erturk
,
A.
, and
Inman
,
D. J.
,
2008
, “
A Distributed Parameter Electromechanical Model for Cantilevered Piezoelectric Energy Harvesters
,”
ASME J. Vib. Acoust.
,
130
(
4
), p.
041002
.
20.
Cha
,
Y.
,
Chae
,
W.
,
Kim
,
H.
,
Walcott
,
H.
,
Peterson
,
S. D.
, and
Porfiri
,
M.
,
2016
, “
Energy Harvesting From a Piezoelectric Biomimetic Fish Tail
,”
Renewable Energy
,
86
, pp.
449
458
.
21.
Samuel
,
G. R.
,
2007
, “
Analysis of Energy Harvesting Positive Displacement Motor
,”
ASME J. Energy Resour. Technol.
,
129
(
4
), pp.
360
363
.
22.
Mininger
,
X.
,
Lefeuvre
,
E.
,
Gabsi
,
M.
,
Richard
,
C.
, and
Guyomar
,
D.
,
2008
, “
Semiactive and Active Piezoelectric Vibration Controls for Switched Reluctance Machine
,”
IEEE Trans. Energy Convers.
,
23
(
1
), pp.
78
85
.
23.
Sardini
,
E.
, and
Serpelloni
,
M.
,
2011
, “
An Efficient Electromagnetic Power Harvesting Device for Low-Frequency Applications
,”
Sens. Actuators, A
,
172
(
2
), pp.
475
482
.
24.
Ooi
,
B. L.
, and
Gilbert
,
J. M.
,
2014
, “
Design of Wideband Vibration-Based Electromagnetic Generator by Means of Dual-Resonator
,”
Sens. Actuators, A
,
213
, pp.
9
18
.
25.
Barton
,
D. A. W.
,
Burrow
,
S. G.
, and
Clare
,
L. R.
,
2010
, “
Energy Harvesting From Vibrations With a Nonlinear Oscillator
,”
ASME J. Vib. Acoust.
,
132
(
2
), p.
021009
.
26.
Saha
,
C. R.
,
O'Donnell
,
T.
,
Wang
,
N.
, and
McCloskey
,
P.
,
2008
, “
Electromagnetic Generator for Harvesting Energy From Human Motion
,”
Sens. Actuators, A
,
147
(
1
), pp.
248
253
.
27.
Han
,
M.
,
Li
,
Z.
,
Sun
,
X.
, and
Zhang
,
H.
,
2014
, “
Analysis of an In-Plane Electromagnetic Energy Harvester With Integrated Magnet Array
,”
Sens. Actuators, A
,
219
, pp.
38
46
.
28.
Tang
,
X.
,
Lin
,
T.
, and
Zuo
,
L.
,
2014
, “
Design and Optimization of a Tubular Linear Electromagnetic Vibration Energy Harvester
,”
IEEE/ASME Trans. Mechatronics
,
19
(
2
), pp.
615
622
.
29.
Yang
,
B.
, and
Lee
,
C.
,
2010
, “
Non-Resonant Electromagnetic Wideband Energy Harvesting Mechanism for Low Frequency Vibrations
,”
Microsyst. Technol.
,
16
(
6
), pp.
961
966
.
30.
Guizzi
,
G. L.
,
Manno
,
M.
,
Manzi
,
G.
,
Salvatori
,
M.
, and
Serpella
,
D.
,
2014
, “
Preliminary Study on a Kinetic Energy Recovery System for Sailing Yachts
,”
Renewable Energy
,
62
, pp.
216
225
.
31.
Yu
,
W.
, and
Zhi-Quan
,
D.
,
2012
, “
Analysis of Electromagnetic Performance and Control Schemes of Electrical Excitation Flux-Switching Machine for DC Power Systems
,”
IEEE Trans. Energy Convers.
,
27
(
4
), pp.
844
855
.
32.
Tang
,
L.
,
Yang
,
Y.
, and
Soh
,
C. K.
,
2010
, “
Toward Broadband Vibration-Based Energy Harvesting
,”
J. Intell. Mater. Syst. Struct.
,
21
(
18
), pp.
1867
1897
.
33.
Zhu
,
D.
,
Tudor
,
M. J.
, and
Beeby
,
S. P.
,
2010
, “
Strategies for Increasing the Operating Frequency Range of Vibration Energy Harvesters: A Review
,”
Meas. Sci. Technol.
,
21
(
2
), p.
022001
.
34.
Twiefel
,
J.
, and
Westermann
,
H.
,
2013
, “
Survey on Broadband Techniques for Vibration Energy Harvesting
,”
J. Intell. Mater. Syst. Struct.
,
24
(
11
), pp.
1291
1302
.
35.
Pellegrini
,
S. P.
,
Tolou
,
N.
,
Schenk
,
M.
, and
Herder
,
J. L.
,
2013
, “
Bistable Vibration Energy Harvesters: A Review
,”
J. Intell. Mater. Syst. Struct.
,
24
(
11
), pp.
1303
1312
.
36.
Harne
,
R. L.
, and
Wang
,
K. W.
,
2013
, “
A Review of the Recent Research on Vibration Energy Harvesting Via Bistable Systems
,”
Smart Mater. Struct.
,
22
(
2
), p.
023001
.
37.
Harb
,
A.
,
2011
, “
Energy Harvesting: State-of-the-Art
,”
Renewable Energy
,
36
(
10
), pp.
2641
2654
.
38.
Shahruz
,
S. M.
,
2006
, “
Design of Mechanical Band-Pass Filters With Large Frequency Bands for Energy Scavenging
,”
Mechatronics
,
16
(
9
), pp.
523
531
.
39.
Leland
,
E. S.
, and
Wright
,
P. K.
,
2006
, “
Resonance Tuning of Piezoelectric Vibration Energy Scavenging Generators Using Compressive Axial Preload
,”
Smart Mater. Struct.
,
15
(
5
), pp.
1413
1420
.
40.
Challa
,
V. R.
,
Prasad
,
M. G.
,
Shi
,
Y.
, and
Fisher
,
F. T.
,
2008
, “
A Vibration Energy Harvesting Device With Bidirectional Resonance Frequency Tunability
,”
Smart Mater. Struct.
,
17
(
1
), p. 015035.
41.
Yu
,
H.
,
Zhou
,
J.
,
Yi
,
X.
,
Wu
,
H.
, and
Wang
,
W.
,
2015
, “
A Hybrid Micro Vibration Energy Harvester With Power Management Circuit
,”
Microelectron. Eng.
,
131
, pp.
36
42
.
42.
Mann
,
B. P.
, and
Sims
,
N. D.
,
2009
, “
Energy Harvesting From the Nonlinear Oscillations of Magnetic Levitation
,”
J. Sound Vib.
,
319
(
1–2
), pp.
515
530
.
43.
Karami
,
M. A.
,
Farmer
,
J. R.
, and
Inman
,
D. J.
,
2013
, “
Parametrically Excited Nonlinear Piezoelectric Compact Wind Turbine
,”
Renewable Energy
,
50
, pp.
977
987
.
44.
Leadenham
,
S.
, and
Erturk
,
A.
,
2014
, “
M-Shaped Asymmetric Nonlinear Oscillator for Broadband Vibration Energy Harvesting: Harmonic Balance Analysis and Experimental Validation
,”
J. Sound Vib.
,
333
(
23
), pp.
6209
6223
.
45.
Wu
,
Y.
,
Badel
,
A.
,
Formosa
,
F.
,
Liu
,
W.
, and
Agbossou
,
A.
,
2014
, “
Nonlinear Vibration Energy Harvesting Device Integrating Mechanical Stoppers Used as Synchronous Mechanical Switches
,”
J. Intell. Mater. Syst. Struct.
,
25
(
14
), pp.
1658
1663
.
46.
Maiorca
,
F.
,
Giusa
,
F.
,
Trigona
,
C.
,
Andò
,
B.
,
Bulsara
,
A. R.
, and
Baglio
,
S.
,
2013
, “
Diode-Less Mechanical H-Bridge Rectifier for ‘Zero Threshold’ Vibration Energy Harvesters
,”
Sens. Actuators, A
,
201
, pp.
246
253
.
47.
Liu
,
H.
,
Lee
,
C.
,
Kobayashi
,
T.
,
Tay
,
C. J.
, and
Quan
,
C.
,
2012
, “
Investigation of a MEMS Piezoelectric Energy Harvester System With a Frequency-Widened-Bandwidth Mechanism Introduced by Mechanical Stoppers
,”
Smart Mater. Struct.
,
21
(
3
), p. 035005.
48.
Chen
,
L.-Q.
, and
Jiang
,
W.-A.
,
2015
, “
Internal Resonance Energy Harvesting
,”
ASME J. Appl. Mech.
,
82
(
3
), p.
031004
.
49.
Ghayesh
,
M. H.
,
Farokhi
,
H.
, and
Amabili
,
M.
,
2014
, “
In-Plane and Out-of-Plane Motion Characteristics of Microbeams With Modal Interactions
,”
Composites, Part B
,
60
(
0
), pp.
423
439
.
50.
Daqaq
,
M. F.
,
Stabler
,
C.
,
Qaroush
,
Y.
, and
Seuaciuc-Osório
,
T.
,
2009
, “
Investigation of Power Harvesting Via Parametric Excitations
,”
J. Intell. Mater. Syst. Struct.
,
20
(
5
), pp.
545
557
.
51.
Ghayesh
,
M. H.
,
Kazemirad
,
S.
, and
Reid
,
T.
,
2012
, “
Nonlinear Vibrations and Stability of Parametrically Exited Systems With Cubic Nonlinearities and Internal Boundary Conditions: A General Solution Procedure
,”
Appl. Math. Modell.
,
36
(
7
), pp.
3299
3311
.
52.
Ghayesh
,
M. H.
,
Païdoussis
,
M. P.
, and
Amabili
,
M.
,
2012
, “
Subcritical Parametric Response of an Axially Accelerating Beam
,”
Thin-Walled Struct.
,
60
, pp.
185
193
.
You do not currently have access to this content.