This paper offers tools and insights regarding wind farm layout to developers in determining the conditions under which it makes sense to invest resources into more accurately predicting of the cost-of-energy (COE), a metric to assess farm viability. Using wind farm layout uncertainty analysis research, we first test a farm design optimization model's sensitivity to surface roughness, economies-of-scale costing, and wind shear. Next, we offer a method for determining the role of land acquisition in predicting uncertainty. This parameter—the willingness of landowners to accept lease compensation offered to them by a developer—models a landowner's participation decision as a probabilistic interval utility function. The optimization-under-uncertainty formulation uses probability theory to model the uncertain parameters, Latin hypercube sampling to propagate the uncertainty throughout the system, and compromise programming to search for the nondominated solution that best satisfies the two objectives: minimize the mean value and standard deviation of COE. The results show that uncertain parameters of economies-of-scale cost-reduction and wind shear have large influence over results in the sensitivity analysis, while surface roughness does not. The results also demonstrate that modeling landowners' participation in the project as uncertain allows the optimization to identify land that may be risky or costly to secure, but worth the investment. In an uncertain environment, developers can predict the viability of the project with an estimated COE and give landowners an idea of where turbines are likely to be placed on their land.

References

References
1.
Gupta
,
A.
,
2015
, “
Efficient Wind Energy Conversion: Evolution to Modern Design
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051201
.
2.
Wind Energy TechnoCentre
,
2011
, “
Wind Farm Development Stages
,” TechnoCentre éolien, Quebec, Canada, accessed Aug. 16, 2016, https://www.eolien.qc.ca/en/eolien-in-quebec/wind-farm-development-stages.html
3.
Chen
,
L.
,
2013
, “
Wind Farm Layout Optimization Under Uncertainty With Landowners' Financial and Noise Concerns
,”
Ph.D. thesis
, Iowa State University, Ames, IA.
4.
Frandsen
,
S.
,
1991
, “
Uncertainty on Wind Turbine Power Curve Measurements
,”
Wind Energy Conversion
, pp.
169
174
.
5.
Ravey
,
I.
, and
Derrick
,
A.
,
1995
, “
Investigations Into the Use of Site Calibration to Reduce the Uncertainty in Power Performance Verification of Wind Turbines in Complex Terrain
,”
Wind Energy Conversion
, pp.
179
182
.
6.
Frandsen
,
S.
,
Antoniu
,
I.
,
Hansen
,
J. C.
,
Kristensen
,
L.
,
Madsen
,
H. Aa.
,
Chaviaropoulos
,
B.
,
Douvikas
,
D.
,
Dahlberg
,
J. A.
,
Derrick
,
A.
,
Dunbabin
,
P.
,
Hunter
,
R.
,
Ruffle
,
R.
,
Kanellopoulos
,
D.
, and
Kapsalis
,
G.
,
2000
, “
Redefinition Power Curve for More Accurate Performance Assessment of Wind Farms
,”
Wind Energy
,
3
(
2
), pp.
81
111
.
7.
Lange
,
M.
,
2005
, “
On the Uncertainty of Wind Power Predictions—Analysis of the Forecast Accuracy and Statistical Distribution of Errors
,”
ASME J. Sol. Energy Eng.
,
127
(
2
), pp.
177
184
.
8.
Messac
,
A.
,
Chowdhury
,
S.
, and
Zhang
,
J.
,
2012
, “
Characterizing and Mitigating the Wind Resouce-Based Uncertainty in Farm Performance
,”
J. Turbul.
,
13
(
13
), pp.
1
26
.
9.
DuPont
,
B.
,
Cagan
,
J.
, and
Moriarty
,
P.
,
2012
, “
Optimization of Wind Farm Layout and Wind Turbine Geometry Using a Multi-Level Extended Pattern Search Algorithm That Accounts for Variation in Wind Shear Profile Shape
,”
ASME
Paper No. DETC2012-70290.
10.
Kallioras
,
N. A.
,
Lagoros
,
N. D.
,
Karlaftis
,
M.
, and
Pachy
,
P.
,
2015
, “
Optimum Layout Design of Onshore Wind Farms Considering Stochastic Loading
,”
Adv. Eng. Software
,
88
, pp.
8
20
.
11.
Veers
,
P.
,
1996
, “
Fatigue Reliability of Wind Turbine Fleets: The Effect of Uncertainty on Projected Costs
,”
ASME J. Sol. Energy Eng.
,
118
(
4
), pp.
222
227
.
12.
Veers
,
P.
,
1995
, “
All Wind Farm Uncertainty is Not the Same: The Economics of Common Versus Independent Causes
,”
Proceedings Windpower 95
, AWEA, Washington DC, pp. 125–129.
13.
Walford
,
C.
,
2006
, “
Wind Turbine Reliability: Understanding and Minimizing Wind Turbine Operation and Maintenance Costs
,”
SANDIA Report No. SAND2006-1100
.
14.
Afanasyeva
,
S.
,
Saari
,
J.
,
Kukkonen
,
S.
,
Partanen
,
J.
, and
Pyrhönen
,
O.
,
2013
, “
Optimization of Wind Farm Design Taking Into Account Uncertainty in Input Parameters
,” Proceedings of the European Wind Energy Conference and Exhibition, Vienna, Austria, pp. 1–10.
15.
González
,
J. S.
,
Payán
,
M. B.
, and
Riquelme-Santos
,
J. M.
,
2012
, “
Optimization of Wind Farm Turbine Layout Including Decision Making Under Risk
,”
IEEE Syst. J.
,
6
(
1
), pp.
94
102
.
16.
Friedman
,
P.
,
2010
, “
Evaluating Economic Uncertainty of Municipal Wind Turbine Projects
,”
Renewable Energy
,
35
(
2
), pp.
484
489
.
17.
Gomez-Quiles
,
C.
,
2011
, “
Price and Resource-Related Uncertainty in the Estimation of the Revenue of a Wind Farm
,”
IEEE Trans. Power Syst.
,
26
(
4
), pp.
2074
2083
.
18.
Usaola
,
J.
, and
Angarita
,
J.
,
2007
, “
Bidding Wind Energy Under Uncertainty
,”
International Conference on Clean Electrical Power
(
ICCEP
), Capri, Italy, May 21–23, pp.
754
759
.
19.
Pinson
,
P.
,
Chevallier
,
C.
, and
Kariniotakis
,
G.
,
2007
, “
Trading Wind Generation From Short-Term Probabilistic Forecasts of Wind Power
,”
IEEE Trans. Power Syst.
,
22
(
3
), pp.
1148
1156
.
20.
Karki
,
R.
, and
Billinton
,
R.
,
2004
, “
Cost-Effective Wind Energy Utilization for Reliable Power Supply
,”
IEEE Trans. Energy Convers.
,
19
(
2
), pp.
435
440
.
21.
Usaola
,
J.
,
2009
, “
Probabilistic Load Flow With Wind Production Uncertainty Using Cumulants and Cornish–Fisher Expansion
,”
Int. J. Electr. Power Energy Syst.
,
31
(
9
), pp.
474
481
.
22.
Ruiz
,
P.
,
Philbrick
,
C.
, and
Sauer
,
P.
,
2009
, “
Wind Power Day-Ahead Uncertainty Management Through Stochastic Unit Commitment Policies
,”
Power Systems Conference and Exposition
(
PSCE
), Seattle, WA, Mar. 15–18, pp.
1
9
.
23.
Toh
,
G.
, and
Gooi
,
H.
,
2011
, “
Incorporating Forecast Uncertainties Into EENS for Wind Turbine Studies
,”
Electr. Power Syst. Res.
,
81
(
2
), pp.
430
439
.
24.
Yu
,
H.
,
Chung
,
C.
,
Wong
,
K.
, and
Zhang
,
J.
,
2009
, “
A Chance Constrained Transmission Network Expansion Planning Method With Consideration of Load and Wind Farm Uncertainties
,”
IEEE Trans. Power Syst.
,
24
(
3
), pp.
1568
1576
.
25.
Chowdhury
,
S.
,
Zhang
,
J.
,
Tong
,
W.
, and
Messac
,
A.
,
2014
, “
Modeling the Influence of Land-Shape on the Energy Production Potential of a Wind Farm Site
,”
ASME J. Energy Resour. Technol.
,
136
(
1
), p.
011203
.
26.
Nikolaidis
,
E.
,
Mourelatos
,
Z.
, and
Pandey
,
V.
,
2011
,
Design Decisions Under Uncertainty With Limited Information
,
CRC Press/Balkema
,
Leiden, The Netherlands
.
27.
Yao
,
W.
,
Chen
,
X.
,
Luo
,
W.
,
Tooren
,
M.
, and
Guo
,
J.
,
2011
, “
Review of Uncertainty-Based Multidisciplinary Design Optimization Methods for Aerospace Vehicles
,”
Prog. Aerosp. Sci.
,
47
(
6
), pp.
450
479
.
28.
Du
,
X.
, and
Chen
,
W.
,
2004
, “
Sequential Optimization and Reliability Assessment Method for Efficient Probabilistic Design
,”
ASME J. Mech. Des.
,
126
(
2
), pp.
225
233
.
29.
Du
,
X.
, and
Chen
,
W.
,
2002
, “
Efficient Uncertainty Analysis Methods for Multidisciplinary Robust Design
,”
AIAA J.
,
40
(
3
), pp.
545
552
.
30.
Du
,
X.
,
Sudjianto
,
A.
, and
Chen
,
W.
,
2004
, “
An Integrated Framework for Optimization Under Uncertainty Using Inverse Reliability Strategy
,”
ASME J. Mech. Des.
,
126
(
4
), pp.
562
570
.
31.
Phadke
,
M.
,
1989
,
Quality Engineering Using Robust Design
,
Prentice Hall
,
Englewood Cliffs, NJ
.
32.
Chen
,
W.
,
Allen
,
J.
,
Mistree
,
F.
, and
Tsui
,
K.
,
1996
, “
A Procedure for Robust Design: Minimizing Variations Caused by Noise Factors and Control Factors
,”
ASME J. Mech. Des.
,
118
(
4
), pp.
478
485
.
33.
Chen
,
L.
, and
MacDonald
,
E.
,
2014
, “
A System-Level Cost-of-Energy Wind Farm Layout Optimization With Landowner Modeling
,”
Energy Convers. Manage.
,
77
, pp.
484
494
.
34.
Chen
,
L.
, and
MacDonald
,
E.
,
2012
, “
Considering Landowner Participation in Wind Farm Layout Optimization
,”
ASME J. Mech. Des.
,
134
(
8
), p.
084506
.
35.
Howard
,
R.
,
1988
, “
Decision Analysis: Practice and Promise
,”
Manage. Sci.
,
34
(
6
), pp.
679
695
.
36.
Du
,
X.
, and
Chen
,
W.
,
2001
, “
A Most Probable Point Based Method for Uncertainty Analysis
,”
J. Des. Manuf. Autom.
,
4
(
1
), pp.
47
66
.
37.
Khalfallah
,
M.
, and
Koliub
,
A.
,
2007
, “
Wind Turbines Power Curve Variability
,”
Desalination
,
209
(
1
), pp.
230
237
.
38.
Windustry
,
2009
, “
Wind Energy Easement and Leases: Compensation Packages
,” Minneapolis, MN, accessed Jan. 19, 2017, http://d3n8a8pro7vhmx.cloudfront.net/windustry/legacy_url/944/Compensation-2009-07-06.pdf?1421782808
39.
Bolinger
,
M.
, and
Wiser
,
R.
,
2011
, “
Understanding Trends in Wind Turbine Prices Over the Past Decade
,” Lawrence Berkeley National Laboratory,
Report No. LBNL-5119E
.
40.
Fingersh
,
L.
,
Hand
,
M.
, and
Laxson
,
A.
,
2006
, “
Wind Turbine Design Cost and Scaling Model
,” National Renewable Energy Laboratory,
Technical Report No. NREL/TP-500-40566
.
41.
Ray
,
M.
,
Rogers
,
A.
, and
McGowan
,
J.
,
2006
, “
Analysis of Wind Shear Models and Trends in Different Terrain
,”
Conference Proceedings: American Wind Energy Association Windpower
, Pittsburgh, PA, June 2–7.
42.
Elliott
,
D.
,
Schwartz
,
M.
, and
Scott
,
G.
,
2008
, “
Wind Shear and Resources at Elevated Heights: Indiana and Iowa Case Studies
,” National Renewable Energy Laboratory,
Report No. NREL/PO-500-43150
.
43.
Mosetti
,
G.
,
Poloni
,
C.
, and
Diviacco
,
B.
,
1994
, “
Optimization of Wind Turbine Positioning in Large Windfarms by Means of a Genetic Algorithm
,”
J. Wind Eng. Ind. Aerodyn.
,
51
(
1
), pp.
105
116
.
44.
DuPont
,
B.
, and
Cagan
,
J.
,
2012
, “
An Extended Pattern Search Approach to Wind Farm Layout Optimization
,”
ASME J. Mech. Des.
,
134
(
8
), p.
081002
.
45.
Grady
,
S.
,
Hussaini
,
M.
, and
Abdulah
,
M.
,
2005
, “
Placement of Wind Turbines Using Genetic Algorithms
,”
Renewable Energy
,
30
(
2
), pp.
259
270
.
46.
Marmidis
,
G.
,
Lazarou
,
S.
, and
Pyrgioti
,
E.
,
2008
, “
Optimal Placement of Wind Turbines in a Wind Park Using Monte Carlo Simulation
,”
Renewable Energy
,
33
(
7
), pp.
1455
1460
.
47.
Chen
,
L.
,
Harding
,
C.
,
Sharma
,
A.
, and
MacDonald
,
E.
,
2016
, “
Modeling Noise and Lease Soft Costs Improves Wind Farm Design and Cost-of-Energy Predictions
,”
Renewable Energy
,
97
, pp.
849
859
.
48.
Eschenbach
,
T.
,
1992
, “
Spiderplots Versus Tornado Diagrams for Sensitivity Analysis
,”
Interfaces
,
22
(
6
), pp.
40
46
.
49.
Denholm
,
P.
,
Hand
,
M.
,
Jackson
,
M.
, and
Ong
,
S.
,
2009
, “
Land-Use Requirements of Modern Wind Power Plants in the United States
,” Technical Report No. NREL/TP-612-45834.
50.
Takle
,
E.
, and
Lundquist
,
J.
,
2011
, “
Research Experience for Undergraduates: Crop-Wind-Energy-Experiment (C-WEX)
,” Earth Observing Laboratory, Boulder, CO, accessed Oct. 28, 2013, http://www.eol.ucar.edu/system/files/files/field_project/CWEX/CWEX_Facility_Request.pdf
51.
GE Energy
,
2013
, “
1.5-77 Wind Turbine
,” GE Renewable Energy, Paris, http://www.ge-energy.com/products_and_services/products/wind_turbines/ge_1.5_77_wind_turbine.jsp
52.
Wall
,
M.
,
1999
, “
GAlib: A C++ Library for Genetic Algorithm Components
,” Massachusetts Institute of Technology, Cambridge, MA, accessed Oct. 28, 2013, http://lancet.mit.edu/ga/Copyright.html
53.
Thørgersen
,
M.
,
Sørensen
,
T.
,
Nielsen
,
P.
,
Grötzner
,
A.
, and
Chun
,
S.
,
2005
, “
WindPRO/PARK: Introduction to Wind Turbine Wake Modelling and Wake Generated Turbulence
,” , Aalborg, Denmark.
54.
Jensen
,
N.
,
1983
, “
A Note on Wind Generator Interaction
,” Risø National Laboratory, Roskilde, Denmark, Report No. 2411.
55.
Archer
,
C.
, and
Jacobson
,
M.
,
2007
, “
Supplying Baseload Power and Reducing Transmission Requirements by Interconnecting Wind Farms
,”
J. Appl. Meteorol. Climatol.
,
46
(
11
), pp.
1701
1717
.
56.
Iowa Environmental Mesonet
,
2013
, “
ASOS/AWOS Data Download
,” Department of Agronomy, Iowa State University, Ames, IA, accessed Oct. 28, 2013, http://mesonet.agron.iastate.edu/request/download.phtml?network=IA_ASOS
57.
Iowa Environmental Mesonet
,
2013
, “
Custom Wind Roses
,” Department of Agronomy, Iowa State University, Ames, IA, accessed Oct. 28, 2013, http://mesonet.agron.iastate.edu/sites/dyn_windrose.phtml?station=AMW&network=IA_ASOS
58.
Carta
,
J.
,
Ramírez
,
P.
, and
Velázquez
,
S.
,
2009
, “
A Review of Wind Speed Probability Distributions Used in Wind Energy Analysis Case Studies in the Canary Islands
,”
Renewable Sustainable Energy Rev.
,
13
(
5
), pp.
933
955
.
59.
Lackner
,
M.
, and
Elkinton
,
C.
,
2007
, “
An Analytical Framework for Offshore Wind Farm Layout Optimization
,”
Wind Eng.
,
31
(
1
), pp.
17
31
.
60.
Fishburn
,
P.
,
1968
, “
Utility Theory
,”
Manage. Sci.
,
14
(
5
), pp.
335
378
.
61.
Slovic
,
P.
,
1995
, “
The Construction of Preference
,”
Am. Psychol.
,
50
(
5
), pp.
364
371
.
62.
Bentham
,
J.
,
1879
,
An Introduction to the Principles of Morals and Legislation
,
Clarendon Press
,
London
.
63.
Tversky
,
A.
, and
Kahneman
,
D.
,
1991
, “
Loss Aversion in Riskless Choice: A Reference-Dependent Model
,”
Q. J. Econ.
,
106
(
4
), pp.
1039
1061
.
64.
Bateman
,
L.
,
Munro
,
A.
,
Rhodes
,
B.
,
Starmer
,
C.
, and
Sugden
,
R.
,
1997
, “
A Test of the Theory of Reference-Dependent Preferences
,”
Q. J. Econ.
,
112
(
2
), pp.
479
505
.
65.
MacDonald
,
E.
,
2008
, “
The Construction of Preference in Engineering Design and Implications for Green Products
,”
Ph.D. thesis
, University of Michigan, Ann Arbor, MI.
66.
Hess
,
S.
,
Rose
,
J.
, and
Hensher
,
D.
,
2008
, “
Asymmetric Preference Formation in Willingness to Pay Estimates in Discrete Choice Models
,”
Transp. Res. Part E
,
44
(
5
), pp.
847
863
.
67.
Loomis
,
J.
,
Peterson
,
G.
,
Champ
,
P.
,
Brown
,
T.
, and
Lucero
,
B.
,
1998
, “
Paired Comparison Estimates of Willingness to Accept Versus Contingent Valuation Estimates of Willingness to Pay
,”
J. Econ. Behav. Organ.
,
35
(
4
), pp.
501
515
.
68.
List
,
J.
, and
Shogren
,
J.
,
2002
, “
Calibration of Willingness-to-Accept
,”
J. Environ. Econ. Manage.
,
43
(
2
), pp.
219
233
.
69.
Thaler
,
R.
,
1980
, “
Toward a Positive Theory of Consumer Choice
,”
J. Econ. Behav. Organ.
,
1
(
1
), pp.
39
60
.
70.
Wickens
,
C. D.
,
2004
,
An Introduction to Human Factors Engineering
, Pearson Education, Upper Saddle River, NJ.
71.
Helton
,
J.
, and
Davis
,
F.
,
2003
, “
Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of Complex Systems
,”
Reliab. Eng. Syst. Saf.
,
81
(
1
), pp.
23
69
.
72.
Matala
,
A.
,
2008
, “
Sample Size Requirement for Monte Carlo-Simulations Using Latin Hypercube Sampling
,” Department of Engineering Physics and Mathematics, Systems Analysis Laboratory,
Helsinki University of Technology
, Mat-2.4108 Independent Research Projects in Applied Mathematics.
73.
Marler
,
R.
, and
Arora
,
J.
,
2004
, “
Survey of Multi-objective Optimization Methods for Engineering
,”
Struct. Multidiscip. Optim.
,
26
(
6
), pp.
369
395
.
74.
Chen
,
W.
,
Wiecek
,
M.
, and
Zhang
,
J.
,
1999
, “
Quality Utility—A Compromise Programming Approach to Robust Design
,”
ASME J. Mech. Des.
,
121
(
2
), pp.
179
187
.
75.
Erbas
,
S.
, and
Erbas
,
C.
,
2003
, “
A Multiobjective Off-Line Routing Model for MPLS Networks
,”
Teletraffic Science and Engineering
,
5
, pp.
471
480
.
76.
Ozturk
,
U.
, and
Norman
,
B.
,
2004
, “
Heuristic Methods for Wind Energy Conversion System Positioning
,”
Electr. Power Syst. Res.
,
70
(
3
), pp.
179
185
.
77.
Kusiak
,
A.
, and
Song
,
Z.
,
2010
, “
Design of Wind Farm Layout for Maximum Wind Energy Capture
,”
Renewable Energy
,
35
(
3
), pp.
685
694
.
78.
Lantz
,
E.
,
Wiser
,
R.
, and
Hand
,
M.
,
2012
, “
IEA Wind Task 26: The Past and Future Cost of Wind Energy
,” National Renewable Energy Laboratory,
Technical Report No. NREL/TP-6A20-53510
.
79.
Fronk
,
B.
,
Neal
,
R.
, and
Garimella
,
S.
,
2010
, “
Evolution of the Transition to a World Driven by Renewable Energy
,”
ASME J. Energy Resour. Technol.
,
132
(
2
), p.
021009
.
You do not currently have access to this content.