Simulation techniques are increasingly becoming popular in recent years as a way of simulating oil drilling processes. Among them, directional drilling is a specific method that benefits enormously from such numerical techniques, inasmuch as the estimation of the wellbore curvature is crucial and cannot be properly estimated through approximate geometry methods. We present here some of the latest advances in bit contact dynamics, wellbore update algorithms, and experimental validation of side cutting, in the context of a finite element (FE) and finite segment simulation framework. The framework is based on the high-fidelity dynamic simulation of the mechanical system, including detailed geometry, large displacements, and accurate contact forces. The theoretical aspects, along with the experimental results, are thoroughly presented. Overall, this paper constitutes a step toward a more deterministic way of calculating build rates and designing downhole drilling tools.

References

References
1.
Marchand
,
N.
, and
Kalantari
,
M.
,
2013
, “
A New Approach for Build Rate Estimation of Downhole Motors
,”
SPE
Annual Technical Conference and Exhibition
, Society of Petroleum Engineers, New Orleans, LA, Sept. 30–Oct. 2, Paper No. SPE-166457-MS.
2.
Arbatani
,
S.
,
Callejo
,
A.
,
Kövecses
,
J.
,
Kalantari
,
M.
,
Marchand
,
N. R.
, and
Dargahi
,
J.
,
2016
, “
An Approach to Directional Drilling Simulation: Finite Element and Finite Segment Methods With Contact
,”
Comput. Mech.
,
57
(
6
), pp.
1001
1015
.
3.
Inglis
,
T.
,
2013
,
Directional Drilling
, Vol.
2
,
Springer Science & Business Media
,
London
.
4.
Sampaio
,
J. H.
,
2017
, “
Designing Three-Dimensional Directional Well Trajectories Using Bézier Curves
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), p.
032901
.
5.
Downton
,
G.
,
2012
, “
Challenges of Modeling Drilling Systems for the Purposes of Automation and Control
,” 1st
IFAC
Workshop on Automatic Control in Offshore Oil and Gas Production,
45
(
8
), pp.
201
210
.
6.
Li
,
Z.
,
Ma
,
X.
,
Huang
,
W.
, and
Liu
,
X.
,
1996
, “
A 3D Analysis of a Bottomhole Assembly Under Large Deflection
,”
SPE Drill. Completion
,
11
(
02
), pp.
104
110
.
7.
Ghasemloonia
,
A.
,
Rideout
,
D. G.
, and
Butt
,
S. D.
,
2013
, “
Vibration Analysis of a Drillstring in Vibration-Assisted Rotary Drilling: Finite Element Modeling With Analytical Validation
,”
ASME J. Energy Resour. Technol.
,
135
(
3
), p.
032902
.
8.
Neto
,
A. G.
,
Martins
,
C. A.
, and
Pimenta
,
P. M.
,
2014
, “
Static Analysis of Offshore Risers With a Geometrically-Exact 3D Beam Model Subjected to Unilateral Contact
,”
Comput. Mech.
,
53
(
1
), pp.
125
145
.
9.
Neto
,
A. G.
,
Pimenta
,
P. M.
, and
Wriggers
,
P.
,
2015
, “
Self-Contact Modeling on Beams Experiencing Loop Formation
,”
Comput. Mech.
,
55
(
1
), pp.
193
208
.
10.
Menand
,
S.
,
Sellami
,
H.
,
Tijani
,
M.
,
Stab
,
O.
,
Dupuis
,
D. C.
, and
Simon
,
C.
,
2006
, “
Advancements in 3D Drillstring Mechanics: From the Bit to the Topdrive
,”
IADC/SPE Drilling Conference
, Society of Petroleum Engineers, Miami, FL, Feb. 21–23,
Paper No. SPE-98965-MS
.
11.
McSpadden
,
A. R.
,
Coker
,
O. D.
, and
Ruan
,
G. C.
,
2011
, “
Advanced Casing Design With Finite-Element Model of Effective Dogleg Severity, Radial Displacements and Bending Loads
,”
SPE Production and Operations Symposium
, Society of Petroleum Engineers, Oklahoma City, OK, Mar. 27–29,
Paper No. SPE-141458-MS
.
12.
Tikhonov
,
V.
,
Valiullin
,
K.
,
Nurgaliev
,
A.
,
Ring
,
L.
,
Gandikota
,
R.
,
Chaguine
,
P.
, and
Cheatham
,
C.
,
2014
, “
Dynamic Model for Stiff String Torque and Drag
,”
SPE Drilling & Completion
,
29
(
3
), pp.
279
294
.
13.
Studer
,
R.
,
Menand
,
S.
, and
Bourgoin
,
S.
,
2015
, “
Advanced Drilling Engineering Methodology Proves Robust in Preventing Mechanical Lock-Up While Deploying Sand-Control Completions Through Complex 3D Drains
,”
SPE/IADC Drilling Conference and Exhibition
, Society of Petroleum Engineers, London, Mar. 17–19,
Paper No. SPE-173141-MS
.
14.
Zifeng
,
L.
, and
Jingyuan
,
L.
,
2008
, “
Mathematical Models for 3D Analysis of Rotary Steering BHA Under Small Deflection
,”
ASME J. Energy Resour. Technol.
,
130
(
1
), p.
013101
.
15.
Bhalla
,
K.
,
Gong
,
L.
, and
McKown
,
G. K.
,
2008
, “
Implementation of a Bottom-Hole Assembly Program
,”
ASME J. Energy Resour. Technol.
,
130
(
4
), p.
043101
.
16.
Wu
,
M.
, and
Chen
,
D. C.
,
2006
, “
A Generic Solution to BHA (Bottomhole-Assembly) Modeling
,”
SPE Annual Technical Conference and Exhibition
, Society of Petroleum Engineers, San Antonio, TX, Sept. 24–27,
Paper No. SPE-101186-MS
.
17.
Tikhonov
,
V. S.
, and
Safronov
,
A. I.
,
2011
, “
Analysis of Postbuckling Drillstring Vibrations in Rotary Drilling of Extended-Reach Wells
,”
ASME J. Energy Resour. Technol.
,
133
(
4
), p.
043102
.
18.
Sugiura
,
J.
,
Samuel
,
R.
,
Oppelt
,
J.
,
Ostermeyer
,
G.
,
Hedengren
,
J.
, and
Pastusek
,
P.
,
2015
, “
Drilling Modeling and Simulation: Current State and Future Goals
,”
SPE/IADC Drilling Conference and Exhibition
, Society of Petroleum Engineers, London, Mar. 17–19,
Paper No. SPE-173045-MS
.
19.
Gurbuz
,
C.
,
Neto
,
A. G.
, and
Pimenta
,
P. M.
,
2015
, “
Offshore Drilling Simulation Using a Beam to Surface Contact Formulation
,”
International Conference on Computational Contact Mechanics
.
20.
Bathe
,
K.-J.
,
2006
,
Finite Element Procedures
,
Klaus-Jurgen Bathe
,
Cambridge, MA
.
21.
Wu
,
S. R.
, and
Gu
,
L.
,
2012
,
Introduction to the Explicit Finite Element Method for Nonlinear Transient Dynamics
,
Wiley
,
Hoboken, NJ
.
22.
Bathe
,
K.
, and
Bolourchi
,
S.
,
1979
, “
Large Displacement Analysis of Three-Dimensional Beam Structures
,”
Int. J. Numer. Methods Eng.
,
14
(
7
), pp.
961
986
.
23.
Przemieniecki
,
J.
,
1968
,
Theory of Matrix Structural Analysis
,
Dover Publications
,
New York
.
24.
Yang
,
Y.
,
Lin
,
S.
, and
Chen
,
C.
,
2007
, “
Rigid Body Considerations for Geometric Nonlinear Analysis of Structures Based on the Updated Lagrangian Formulation
,”
Computational Methods in Engineering and Science
,
Z. H.
Yao
and
M. W.
Yuan
, eds.,
Springer
,
Berlin
, pp.
113
128
.
25.
Hamper
,
M. B.
,
Recuero
,
A. M.
,
Escalona
,
J. L.
, and
Shabana
,
A. A.
,
2012
, “
Use of Finite Element and Finite Segment Methods in Modeling Rail Flexibility: A Comparative Study
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
4
), p.
041007
.
26.
García de Jalón
,
J.
, and
Bayo
,
E.
,
1994
,
Kinematic and Dynamic Simulation of Multibody Systems, the Real-Time Challenge
,
Springer-Verlag
,
New York
.
27.
Campos
,
L.
,
Oden
,
J.
, and
Kikuchi
,
N.
,
1982
, “
A Numerical Analysis of a Class of Contact Problems With Friction in Elastostatics
,”
Comput. Methods Appl. Mech. Eng.
,
34
(
1–3
), pp.
821
845
.
28.
Guerra
,
F.
, and
Browning
,
R.
,
1983
, “
Comparison of Two Slideline Methods Using ADINA
,”
Comput. Struct.
,
17
(
5–6
), pp.
819
834
.
29.
Kikuchi
,
N.
and
Song
,
Y.
,
1981
, “
Penalty Finite Element Approximations of a Class of Unilateral Problems in Linear Elasticity
,”
Q. Appl. Mech.
,
39
(
1
), pp.
1
22
.
30.
Parisch
,
H.
and
Lubbing
,
C.
,
1997
, “
Formulation of Arbitrary Shaped Surface Elements for 3D Large Deformations Contact With Friction
,”
Int. J. Numer. Methods Eng.
,
40
(
18
), pp.
3359
3383
.
31.
Zhong
,
Z. H.
,
1993
,
Finite Element Procedures for Contact-Impact Problems
,
Oxford Science Publications
,
Oxford, U.K
.
32.
Muthukumar
,
S.
, and
DesRoches
,
R.
,
2006
, “
A Hertz Contact Model With Non-Linear Damping for Pounding Simulation
,”
Earthquake Eng. Struct. Dyn.
,
35
(
7
), pp.
811
828
.
You do not currently have access to this content.