By treating heavy oil as multiple pseudocomponents, techniques have been developed to experimentally and theoretically determine diffusion coefficients of CO2-heavy oil systems by coupling heat and mass transfer together with consideration of swelling effect. Experimentally, diffusion tests have been conducted for hot CO2-heavy oil systems with three different temperatures under a constant pressure by using a visualized pressure-volume-temperature (PVT) setup. The swelling of liquid phase in the PVT cell is continuously monitored and recorded during the measurements. Theoretically, a two-dimensional (2D) mathematical model incorporating the volume-translated Peng–Robinson equation of state (PR EOS) with a modified alpha function has been developed to describe heat and mass transfer for hot CO2-heavy oil systems. Heavy oil sample has been characterized as three pseudocomponents for accurately quantifying phase behavior of the CO2-heavy oil systems, while the binary interaction parameters (BIPs) are tuned with the experimentally measured saturation pressures. The diffusion coefficient of hot CO2 in heavy oil is then determined once the discrepancy between the experimentally measured dynamic swelling factors and theoretically calculated ones has been minimized. During the diffusion experiments, heat transfer is found to be dominant over mass transfer at the beginning and reach its equilibrium in a shorter time; subsequently, mass transfer shows its dominant effect. The enhanced oil swelling mainly occurs during the coupled heat and mass transfer stage. CO2 diffusion coefficient in heavy oil is found to increase with temperature at a given pressure, while it can be explicitly correlated as a function of temperature.

References

References
1.
Lee
,
H.
,
Jin
,
J.
,
Shin
,
H.
, and
Choe
,
J.
,
2015
, “
Efficient Prediction of SAGD Productions Using Static Factor Clustering
,”
ASME J. Energy Resour. Technol.
,
137
(
3
), p.
032907
.
2.
Panwar
,
A.
,
Trivedi
,
J. J.
, and
Nejadi
,
S.
,
2015
, “
Importance of Distributed Temperature Sensor Data for Steam Assisted Gravity Drainage Reservoir Characterization and History Matching Within Ensemble Kalman Filter Framework
,”
ASME J. Energy Resour. Technol.
,
137
(
4
), p.
042902
.
3.
Edmunds
,
N.
,
1999
, “
On the Difficult Birth of SAGD
,”
J. Can. Pet. Technol.
,
38
(
1
), pp.
14
24
.
4.
Irani
,
M.
, and
Ghannadi
,
S.
,
2013
, “
Understanding the Heat-Transfer Mechanism in the Steam-Assisted Gravity-Drainage (SAGD) Process and Comparing the Conduction and Convection Flux in Bitumen Reservoirs
,”
SPE J.
,
18
(
1
), pp.
134
145
.
5.
Wang
,
C.
,
Liu
,
H.
,
Zheng
,
Q.
,
Liu
,
Y.
,
Dong
,
X.
, and
Hong
,
C.
,
2015
, “
A New High-Temperature Gel for Profile Control in Heavy Oil Reservoirs
,”
ASME J. Energy Resour. Technol.
,
138
(
2
), p.
022901
.
6.
Gul
,
A.
, and
Trivedi
,
J. J.
,
2010
, “
CO2 Based VAPEX for Heavy Oil Recovery in Fractured Carbonate Reservoirs
,”
SPE EOR
Conference at Oil and Gas West Asia
, Muscat, Oman, Apr. 11–13, Paper No. SPE 129594-MS.
7.
Kovscek
,
A. R.
,
2012
, “
Emerging Challenges and Potential Futures for Thermally Enhanced Oil Recovery
,”
J. Pet. Sci. Eng.
,
98–99
, pp.
130
143
.
8.
Hutchence
,
K.
, and
Huang
,
S. S.
,
1999
, “
Gas Pressure Cycling for Thin Heavy Oil Reservoirs
,”
Petroleum Conference of the South Saskatchewan Section
, Regina, SK, Oct. 18–21, Paper No. PETSOC-99-107.
9.
Shi
,
J.
, and
Leung
,
J. Y.
,
2014
, “
Semi-Analytical Proxy for Vapex Process Modeling in Heterogeneous Reservoirs
,”
ASME J. Energy Resour. Technol.
,
136
(
3
), p.
032904
.
10.
Shu
,
W. R.
, and
Hartman
,
K. J.
,
1988
, “
Effect of Solvent on Steam Recovery of Heavy Oil
,”
SPE Reservoir Eng.
,
3
(
2
), pp.
457
465
.
11.
James
,
L. A.
,
Rezaei
,
N.
, and
Chatzis
,
I.
,
2008
, “
VAPEX, Warm VAPEX and Hybrid VAPEX—The State of Enhanced Oil Recovery for In Situ Heavy Oils in Canada
,”
J. Can. Pet. Technol.
,
47
(
4
), pp.
1
7
.
12.
Zhang
,
Y.
,
Huang
,
S.
, and
Luo
,
P.
,
2010
, “
Coupling Immiscible CO2 Technology and Polymer Injection to Maximize EOR Performance for Heavy Oils
,”
J. Can. Pet. Technol.
,
49
(
5
), pp.
27
33
.
13.
Sahin
,
S.
,
Kalfa
,
U.
, and
Celebioglu
,
D.
,
2008
, “
Bati Raman Field Immiscible CO2 Application-Status Quo and Future Plans
,”
SPE Reservoir Eval. Eng.
,
11
(
4
), pp.
778
791
.
14.
Jia
,
X.
,
Ma
,
K.
,
Liu
,
Y.
,
Liu
,
B.
,
Zhang
,
J.
, and
Li
,
Y.
,
2013
, “
Enhance Heavy Oil Recovery by In-Situ Carbon Dioxide Generation and Application in China Offshore Oilfield
,”
SPE Enhanced Oil Recovery Conference
, Kuala Lumpur, Malaysia, July 2–4, 2013, Paper No. SPE 165215-MS.
15.
Jha
,
K. N.
,
1986
, “
A Laboratory Study of Heavy Oil Recovery With Carbon Dioxide
,”
J. Can. Pet. Technol.
,
25
(
2
), pp.
54
63
.
16.
Rojas
,
G. A.
, and
Ali
,
S. M. F.
,
1988
, “
Dynamics of Subcritical CO2/Brine Floods for Heavy Oil Recovery
,”
SPE Reservoir Eng.
,
3
(
1
), pp.
35
44
.
17.
Li
,
H.
,
Yang
,
D.
, and
Tontiwachwuthikul
,
P.
,
2012
, “
Experimental and Theoretical Determination of Equilibrium Interfacial Tension of the Solvent(s)-CO2-Heavy Oil Systems
,”
Energy Fuels
,
26
(
3
), pp.
1776
1786
.
18.
Zheng
,
S.
, and
Yang
,
D.
,
2013
, “
Pressure Maintenance and Improving Oil Recovery by Means of Immiscible Water-Alternating-CO2 Processes in Thin Heavy Oil Reservoirs
,”
SPE Reservoir Eval. Eng.
,
16
(
1
), pp.
60
71
.
19.
Zheng
,
S.
,
Li
,
H.
, and
Yang
,
D.
,
2013
, “
Pressure Maintenance and Improving Oil Recovery With Immiscible CO2 Injection in Thin Heavy Oil Reservoirs
,”
J. Pet. Sci. Eng.
,
112
, pp.
139
152
.
20.
Tharanivasan
,
A. K.
,
Yang
,
C.
, and
Gu
,
Y.
,
2004
, “
Comparison of Three Different Interface Mass Transfer Models Used in the Experimental Measurement of Solvent Diffusivity in Heavy Oil
,”
J. Pet. Sci. Eng.
,
44
(
3–4
), pp.
269
282
.
21.
Li
,
Z.
, and
Dong
,
M.
,
2009
, “
Experimental Study of Carbon Dioxide in Oil-Saturated Porous Media Under Reservoir Conditions
,”
Ind. Eng. Chem. Res.
,
48
(
20
), pp.
9307
9317
.
22.
Riazi
,
M. R.
, and
Whitson
,
C. H.
,
1993
, “
Estimating Diffusion Coefficients of Dense Fluids
,”
Ind. Eng. Chem. Res.
,
32
(
12
), pp.
3081
3088
.
23.
Sun
,
H.
,
Li
,
H.
, and
Yang
,
D.
,
2014
, “
Coupling Heat and Mass Transfer for a Gas Mixture-Heavy Oil System at High Pressures and Elevated Temperatures
,”
Int. J. Heat Mass Transfer
,
74
(
7
), pp.
173
184
.
24.
Riazi
,
M. R.
,
1996
, “
A New Method for Experimental Measurement of Diffusion Coefficients in Reservoir Fluids
,”
J. Pet. Sci. Eng.
,
14
(
3–4
), pp.
235
250
.
25.
Rongy
,
L.
,
Haugen
,
K. B.
, and
Firoozabadi
,
A.
,
2012
, “
Mixing From Fickian Diffusion and Natural Convection in Binary Non-Equilibrium Fluid Phases
,”
AIChE J.
,
58
(
5
), pp.
1336
1345
.
26.
Li
,
H.
, and
Yang
,
D.
,
2016
, “
Determination of Individual Diffusion Coefficients of Solvent/CO2 Mixture in Heavy Oil With Pressure-Decay Method
,”
SPE J.
,
21
(
1
), pp.
131
143
.
27.
Riley
,
M. F.
, and
Firoozabadi
,
A.
,
1998
, “
Compositional Variation in Hydrocarbon Reservoirs With Natural Convection and Diffusion
,”
AIChE J.
,
44
(
2
), pp.
452
464
.
28.
Firoozabadi
,
A.
,
Ghorayeb
,
K.
, and
Shukla
,
K.
,
2000
, “
Theoretical Model of Thermal Diffusion Factors in Multicomponent Mixtures
,”
AIChE J.
,
46
(
5
), pp.
892
900
.
29.
Kempers
,
L. J. T. M.
,
2001
, “
A Comprehensive Thermodynamic Theory of the Soret Effect in a Multicomponent Gas, Liquid, or Solid
,”
J. Chem. Phys.
,
115
(
14
), pp.
6330
6341
.
30.
Platten
,
J. K.
,
2005
, “
The Soret Effect: A Review of Recent Experimental Results
,”
ASME J. Appl. Mech.
,
73
(
1
), pp.
5
15
.
31.
Leahy-Dios
,
A.
,
2008
, “
Experimental and Theoretical Investigation of Fickian and Thermal Diffusion Coefficients in Hydrocarbon Mixtures
,”
Ph.D. dissertation
, Yale University, New Haven, CT.
32.
Eslamian
,
M.
, and
Saghir
,
M. Z.
,
2009
, “
A Critical Review of Thermodiffusion Models: Role and Significance of the Heat of Transport and the Activation Energy of Viscous Flow
,”
J. Non-Equilib. Thermodyn.
,
34
(
2
), pp.
97
131
.
33.
Eslamian
,
M.
,
2011
, “
Advances in Thermodiffusion and Thermophoresis (Soret Effect) in Liquid Mixtures
,”
Front. Heat Mass Transfer
,
2
(4), pp.
1
20
.
34.
Krishna
,
R.
, and
Standart
,
G. L.
,
1979
, “
Mass and Energy Transfer in Multicomponent Systems
,”
Chem. Eng. Commun.
,
3
(
4–5
), pp.
201
275
.
35.
Taylor
,
R.
, and
Krishna
,
R.
,
1993
,
Multicomponent Mass Transfer
,
Wiley
,
New York
.
36.
Ghorayeb
,
K.
, and
Firoozabadi
,
A.
,
2000
, “
Molecular, Pressure, and Thermal Diffusion in Nonideal Multicomponent Mixtures
,”
AIChE J.
,
46
(
5
), pp.
883
891
.
37.
Ghorayeb
,
K.
, and
Firoozabadi
,
A.
,
2000
, “
Numerical Study of Natural Convection and Diffusion in Fractured Porous Media
,”
SPE J.
,
5
(
1
), pp.
12
20
.
38.
Haugen
,
K. B.
, and
Firoozabadi
,
A.
,
2009
, “
Mixing of Two Binary Nonequilibrium Phases in One Dimension
,”
AIChE J.
,
55
(
8
), pp.
1930
1936
.
39.
Leahy-Dios
,
A.
, and
Firoozabadi
,
A.
,
2007
, “
Unified Model for Nonideal Multicomponent Molecular Diffusion Coefficients
,”
AIChE J.
,
53
(
11
), pp.
2932
2939
.
40.
Hoteit
,
H.
,
2013
, “
Modeling Diffusion and Gas–Oil Mass Transfer in Fractured Reservoirs
,”
J. Pet. Sci. Eng.
,
105
, pp.
1
17
.
41.
Mangalsingh
,
D.
, and
Jagai
,
T.
,
1996
, “
A Laboratory Investigation of the Carbon Dioxide Immiscible Process
,”
SPE
Latin America/Caribbean Petroleum Engineering Conference
, Port-of-Spain, Trinidad, Apr. 23–26, Paper No. SPE 36134-MS.
42.
Sheikha
,
H.
,
Mehrotra
,
A. K.
, and
Pooladi-Darvish
,
M.
,
2006
, “
An Inverse Solution Methodology for Estimating the Diffusion Coefficient of Gases in Athabasca Bitumen From Pressure-Decay Data
,”
J. Pet. Sci. Eng.
,
53
(
3–4
), pp.
189
202
.
43.
Li
,
H.
,
Zheng
,
S.
, and
Yang
,
D.
,
2013
, “
Enhanced Swelling Effect and Viscosity Reduction of Solvent(s)/CO2/Heavy-Oil Systems
,”
SPE J.
,
18
(
4
), pp.
695
707
.
44.
Zheng
,
S.
, and
Yang
,
D.
,
2016
, “
Determination of Individual Diffusion Coefficients of C3H8-n-C4H10-CO2-Heavy Oil Systems at High Pressures and Elevated Temperatures by Dynamic Volume Analysis (DVA)
,” 20th
SPE
Improved Oil Recovery Conference
, Tulsa, OK, Apr. 9–13, Paper No. SPE-179618-MS.
45.
Zheng
,
S.
,
Li
,
H.
,
Sun
,
H.
, and
Yang
,
D.
,
2016
, “
Determination of Diffusion Coefficient for Alkane Solvent-CO2 Mixtures in Heavy Oil With Consideration of Swelling Effect
,”
Ind. Eng. Chem. Res.
,
55
(
6
), pp.
1533
1549
.
46.
Cussler
,
E. L.
,
2009
,
Diffusion: Mass Transfer in Fluid Systems
,
Cambridge University Press
,
Cambridge, UK
.
47.
Poling
,
B. E.
,
Prausnitz
,
J. M.
, and
O'Connell
,
J. P.
,
2001
,
The Properties of Gases and Liquids
,
5th ed.
,
McGraw-Hill
,
New York
.
48.
Hayduk
,
W.
, and
Cheng
,
S. C.
,
1971
, “
Review of Relation Between Diffusivity and Solvent Viscosity in Dilute Liquid Solution
,”
Chem. Eng. Sci.
,
26
(
5
), pp.
635
646
.
49.
Luo
,
P.
,
Yang
,
C.
, and
Gu
,
Y.
,
2007
, “
Enhanced Solvent Dissolution Into In-Situ Upgraded Heavy Oil Under Different Pressures
,”
Fluid Phase Equilib.
,
252
(
1–2
), pp.
143
151
.
50.
Lobe
,
V. M.
,
1973
, “
A Model for the Viscosity of Liquid–Liquid Mixtures
,” M.Sc. thesis, University of Rochester, Rochester, NY.
51.
Li
,
H.
, and
Yang
,
D.
,
2013
, “
Phase Behavior of C3H8/n-C4H10/Heavy-Oil Systems at High Pressures and Elevated Temperatures
,”
J. Can. Pet. Technol.
,
52
(
1
), pp.
30
40
.
52.
Peng
,
D.
, and
Robinson
,
D. B.
,
1976
, “
A New Two-Constant Equation of State
,”
Ind. Eng. Chem. Fundam.
,
15
(
1
), pp.
59
64
.
53.
Li
,
H.
, and
Yang
,
D.
,
2011
, “
Modified α Function for the Peng–Robinson Equation of State to Improve the Vapor Pressure Prediction of Non-Hydrocarbon and Hydrocarbon Compounds
,”
Energy Fuels
,
25
(
1
), pp.
215
223
.
54.
Li
,
X.
,
Li
,
H.
, and
Yang
,
D.
,
2013
, “
Determination of Multiphase Boundaries and Swelling Factors of Solvent(s)-CO2-Heavy Oil Systems at High Pressures and Elevated Temperatures
,”
Energy Fuels
,
27
(
3
), pp.
1293
1306
.
55.
Chueh
,
P. L.
, and
Prausnitz
,
J. M.
,
1967
, “
Vapor–Liquid Equilibria at High Pressures: Calculation of Partial Molar Volumes in Nonpolar Liquid Mixtures
,”
AIChE J.
,
13
(
6
), pp.
1099
1107
.
56.
Whitson
,
C. H.
, and
Brule
,
M. R.
,
2000
,
Phase Behavior
(Monograph Series),
SPE
,
Richardson, TX
.
57.
Soreide
,
I.
,
1989
, “
Improved Phase Behavior Predictions of Petroleum Reservoir Fluids From a Cubic Equation of State
,” Ph.D. dissertation, Norwegian Institute of Technology (NTH), Trondheim, Norway.
58.
Welker
,
J. R.
, and
Dunlop
,
D. D.
,
1963
, “
Physical Properties of Carbonated Oil
,”
J. Pet. Technol.
,
15
(
8
), pp.
873
876
.
59.
Teja
,
A. S.
, and
Sandler
,
A. I.
,
1980
, “
A Corresponding States Equation for Saturated Liquid Densities: II. Application to the Calculation of Swelling Factors of CO2-Crude Oil Systems
,”
AIChE J.
,
26
(
3
), pp.
341
345
.
60.
Peneloux
,
A.
,
Rauzy
,
E.
, and
Freze
,
R.
,
1982
, “
A Consistent Correction for Redlich-Kwong-Soave Volumes
,”
Fluid Phase Equilib.
,
8
(
1
), pp.
7
23
.
61.
Spencer
,
C. F.
, and
Danner
,
R. P.
,
1972
, “
Improved Equation for Prediction of Saturated Liquid Density
,”
J. Chem. Eng. Data
,
17
(
2
), pp.
236
241
.
62.
Danesh
,
A.
,
Xu
,
D.
, and
Todd
,
A. C.
,
1992
, “
A Grouping Method to Optimize Oil Description for Compositional Simulation of Gas-Injection Processes
,”
SPE Reservoir Eng.
,
7
(
3
), pp.
343
348
.
63.
Wu
,
R. S.
, and
Batycky
,
J. P.
,
1988
, “
Pseudocomponent Characterization for Hydrocarbon Miscible Displacement
,”
SPE Reservoir Eng.
,
3
(
3
), pp.
875
883
.
64.
Fujii
,
H.
, and
Horne
,
R.
,
1995
, “
Multivariate Optimization of Networked Production Systems
,”
SPE Prod. Facil.
,
10
(
3
), pp.
165
171
.
65.
Chen
,
S.
,
Li
,
H.
, and
Yang
,
D.
,
2010
, “
Optimization of Production Performance in a CO2 Flooding Reservoir Under Uncertainty
,”
J. Can. Pet. Technol.
,
49
(
2
), pp.
71
78
.
66.
Upreti
,
S. R.
, and
Mehrotra
,
A. K.
,
2002
, “
Diffusivity of CO2, CH4, C2H6, and N2 in Athabasca Bitumen
,”
Can. J. Chem. Eng.
,
80
(
1
), pp.
116
125
.
67.
Schmidt
,
T.
,
1989
, “
Mass Transfer by Diffusion
,”
AOSTRA Technical Handbook on Oil Sands, Bitumen, and Heavy Oils
,
Alberta Oil Sand Technologies and Research Authority
,
Edmonton, AB, Canada
, pp.
311
332
.
68.
Etminan
,
S. R.
,
Maini
,
B. B.
,
Chen
,
Z.
, and
Hassanzade
,
H.
,
2010
, “
Constant-Pressure Technique for Gas Diffusivity and Solubility Measurements in Heavy Oil and Bitumen
,”
Energy Fuels
,
24
(
1
), pp.
533
549
.
69.
Fadaei
,
H.
,
Scarff
,
B.
, and
Sinton
,
D.
,
2011
, “
Rapid Microfluidics-Based Measurement of CO2 Diffusivity in Bitumen
,”
Energy Fuels
,
25
(
10
), pp.
4829
4835
.
70.
Tharanivasan
,
A. K.
,
Yang
,
C.
, and
Gu
,
Y.
,
2006
, “
Measurements of Molecular Diffusion Coefficients of Carbon Dioxide, Methane, and Propane in Heavy Oil Under Reservoir Conditions
,”
Energy Fuels
,
20
(
6
), pp.
2509
2517
.
71.
Yang
,
C.
, and
Gu
,
Y.
,
2006
, “
Diffusion Coefficients and Oil Swelling Factors of Carbon Dioxide, Methane, Ethane, Propane, and Their Mixtures in Heavy Oil
,”
Fluid Phase Equilib.
,
243
(
1–2
), pp.
64
73
.
72.
Yaws
,
C. L.
,
2003
,
Yaws' Handbook of Thermodynamic and Physical Properties of Chemical Compounds: Physical, Thermodynamic, and Transport Properties for 5,000 Organic Chemical Compounds
,
Knovel
,
Norwich, NY
.
You do not currently have access to this content.