In order to design energy efficient cooker-top burners, the stabilization mechanisms of partially premixed flames were investigated. Different design features are assessed with the identical fuel (CH4), fuel flow rate, and load vessel arrangement, but with different levels of primary aeration and flame delivery. k–ε Reynolds-averaged Navier–Stokes (RANS) simulations are performed using the modified temperature-composition pdf method and the intrinsic low-dimensional manifold (ILDM) reduction scheme. The results show that the optimum value of the angle of flame delivery is about 30–35 deg. The contact area of the flame cup under the bottom surface depends on the diameter of the burner head which determines the separation of the flames. The traditional solution to reduce the port separations, which is to increase the number of ports, is shown to cause weak flames which extinguish in shorter distances and can have strong tendency to blow off. It also causes significant pressure resistance ahead of the contraction tube and so impairs the primary aeration. In the present study, a new slot profile, named the double-V form, is proposed and shown to be very effective in reducing the gaps between the flames, without creating any further pressure resistance.

References

References
1.
Dennekamp
,
M.
,
Howarth
,
S.
,
Dick
,
C. A. J.
,
Cherrie
,
J. W.
,
Donaldson
,
K.
, and
Seaton
,
A.
,
2001
, “
Ultrafine Particles and Nitrogen Oxides Generated by Gas and Electric Cooking
,”
Occup. Environ. Med.
,
58
(
8
), pp.
511
516
.
2.
Wong
,
T. W.
,
Yu
,
T. S.
,
Liu
,
H. J.
, and
Wong
,
A. H. S.
,
2004
, “
Household Gas Cooking: A Risk Factor for Respiratory Illnesses in Preschool Children
,”
Arch. Dis. Child.
,
89
(
7
), pp.
631
636
.
3.
Park,
,
S.
,
S.
,
Hong,
,
J.
,
H.
,
Lee,
,
J.
,
H.
,
Kim,
,
Y.
,
J.
,
Cho,
,
S.
,
Y.
, and
Kim,
,
S.
,
J.
,
2008
, “
Investigation of Nitrous Acid Concentration in an Indoor Environment Using an In-Situ Monitoring System
,”
Atmos. Environ.
,
42
(
27
), pp.
6586
6596
.
4.
Ko
,
Y. C.
, and
Lin
,
T. H.
,
2003
, “
Emissions and Efficiency of a Domestic Gas Stove Burning Natural Gases With Various Compositions
,”
Energy Convers. Manage.
,
44
(
19
), pp.
3001
3014
.
5.
Wagner
,
A. Y.
,
Livbjerg
,
H.
,
Kristensen
,
P. G.
, and
Glarborg
,
P.
,
2010
, “
Particle Emissions From Domestic Gas Cookers
,”
Combust. Sci. Technol.
,
182
(
10
), pp.
1511
1527
.
6.
Deutsches Institut für Normung, 2015, “
Domestic Cooking Appliances Burning Gas—Part 2-1: Rational Use of Energy—General
,” Deutsches Institut für Normung e. V., Berlin, Standard No. EN30-2-1:2015.
7.
Deutsches Institut für Normung, 1999, “
Domestic Cooking Appliances Burning Gas—Part 2-2: Rational Use of Energy—Appliances Having Forced-Convection Ovens and/or Grills
,” Deutsches Institut für Normung e. V., Berlin, Standard No. EN30-2-2:1999.
8.
Zhen,
,
H.
,
S.
,
Leung,
,
C.
,
W.
, and
Wong,
,
T.
,
T.
,
2014
, “
Improvement of Domestic Cooking Flames by Utilizing Swirling Flows
,”
Fuel
,
119
, pp.
153
156
.
9.
Stubington
,
J. F.
, and
Zou
,
W.
,
2000
, “
Efficient Low-Emission Burners for Natural Gas Domestic Cook-Tops
,”
J. Inst. Energy
,
73
(494), pp.
35
42
.
10.
Kwok
,
L. C.
,
Leung
,
C. W.
, and
Cheung
,
C. S.
,
2005
, “
Heat Transfer Characteristics of an Array of Impinging Pre-Mixed Slot Flame Jets
,”
Int. J. Heat Mass Transfer
,
48
(
9
), pp.
1727
1738
.
11.
Hou
,
S. S.
, and
Chou
,
C. H.
,
2013
, “
Parametric Study of High-Efficiency and Low-Emission Gas Burners
,”
Adv. Mater. Sci. Eng.
,
2013
, p.
154957
.
12.
Sanz-Serrano
,
F.
,
Sagues
,
C.
, and
Llorente
,
S.
,
2016
, “
Inverse Modeling of Pan Heating in Domestic Cookers
,”
Appl. Therm. Eng.
,
92
, pp.
137
148
.
13.
Moore
,
N. J.
,
Terry
,
S. D.
, and
Lyons
,
K. M.
,
2011
, “
Flame Hysteresis Effects in Methane Jet Flames in Air-Coflow
,”
ASME J. Energy Resour. Technol.
,
133
(
2
), p.
022202
.
14.
Mishra
,
D. P.
,
2004
, “
Emission Studies of Impinging Premixed-Flames
,”
Fuel
,
83
(
13
), pp.
1743
1748
.
15.
Li
,
H. B.
,
Wong
,
T. T.
,
Leung
,
C. W.
, and
Probert
,
S. D.
,
2006
, “
Thermal Performances and CO Emissions of Gas-Fired Cooker-Top Burners
,”
Appl. Energy
,
83
(
12
), pp.
1326
1338
.
16.
Stubington,
,
J.
,
F.
,
Beashel
,
G.
,
Murphy
,
T.
,
Junus
,
R.
,
Ashman,
,
P.
,
J.
, and
Sergeant,
,
G.
,
D.
,
1994
, “
Emissions and Efficiency of Production Cook-Top Burners Firing Natural Gas
,”
J. Inst. Energy
,
67
, pp.
143
155
.
17.
Özdemir
,
İ. B.
, and
Kantaş
,
M.
,
2016
, “
Investigation of Partially-Premixed Combustion in a Household Cooker-Top Burner
,”
Fuel Process. Technol.
,
151
, pp.
107
116
.
18.
Kwok
,
L. C.
,
Leung
,
C. W.
, and
Cheung
,
C. S.
,
2003
, “
Heat-Transfer Characteristics of Slot and Round Premixed Impinging Flame Jets
,”
Exp. Heat Transfer
,
16
(
2
), pp.
111
137
.
19.
Ashman
,
P.
,
Junus
,
R.
,
Stubington
,
J. F.
, and
Sergeant
,
G. D.
,
1994
, “
The Effects of Load Height on the Emissions From a Natural Gas-Fired Domestic Cook-Top Burner
,”
Combust. Sci. Technol.
,
103
, pp.
283
298
.
20.
Junus
,
R.
,
Vierkant
,
J. E.
,
Stubington
,
J. F.
,
Sergeant
,
G. D.
, and
Tas
,
I.
,
1998
, “
The Effects of the Design of the Cap of a Natural Gas-Fired Cooktop Burner on Flame Stability
,”
Int. J. Energy Res.
,
22
(
2
), pp.
175
184
.
21.
Dirrenberger
,
P.
,
LeGall
,
H.
,
Bounaceur
,
R.
,
Herbinet
,
O.
,
Glaude
,
P. A.
,
Konnov
,
A.
, and
Battin-Leclerc
,
F.
,
2011
, “
Measurements of Laminar Flame Velocity for Components of Natural Gas
,”
Energy Fuels
,
25
(
9
), pp.
3875
3884
.
22.
Papanikolaou
,
N.
, and
Wierzba
,
I.
,
1997
, “
The Effects of Burner Geometry and Fuel Composition on the Stability of a Jet Diffusion Flame
,”
ASME J. Energy Resour. Technol.
,
119
(
4
), pp.
265
270
.
23.
Gollahalli
,
S. R.
,
1998
, “
Effects of Flame Lift-Off on the Differences Between the Diffusion Flames From Circular and Elliptic Burners
,”
ASME J. Energy Resour. Technol.
,
120
(
2
), pp.
161
166
.
24.
Warnatz
,
J.
,
Maas
,
U.
, and
Dibble
,
R. W.
,
2001
,
Combustion: Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollutant Formation
,
Springer-Verlag
, Heidelberg, Germany, Chap. 9.
25.
Maas
,
U.
, and
Pope
,
S. B.
,
1992
, “
Simplifying Chemical Kinetics: Intrinsic Low Dimensional Manifolds in Composition Space
,”
Combust. Flame
,
88
(3–4), pp.
239
264
.
26.
Sen
,
B. A.
,
Özdemir
,
İ. B.
, and
Warnatz
,
J.
,
2003
, “
Implementation of the Hierarchical Structure of the Combustion Processes Into Intrinsic Low-Dimensional Manifolds Technique
,”
The International Symposium on Turbulence, Heat and Mass Transfer
(THMT-03 Antalya),
K.
Hanjalic
,
Y.
Nagano
, and
M. J.
Tummers
, eds.,
Begell House
,
New York
, pp.
947
952
.
27.
Bykov
,
V.
,
Goldfarb
,
I.
,
Goldshtein
,
V.
, and
Maas
,
U.
,
2006
, “
Comparative Analysis of Two Asymptotic Approaches Based on Integral Manifolds
,”
IMA J. Appl. Math.
,
71
(
3
), pp.
359
382
.
28.
Özdemir
,
İ. B.
,
2016
, “
A Modification to Temperature-Composition PDF Method and Its Application to the Simulation of a Transitional Bluff-Body Flame
,”
Combust. Theory Modell.
(submitted).
29.
Özdemir
,
İ. B.
,
2017
, “
Simulation of Turbulent Combustion in a Self-Aerated Domestic Gas Oven
,”
Appl. Therm. Eng.
,
113
, pp.
160
169
.
30.
ANSYS
, 2006, “
FLUENT User's Guide Release 6.3
,” ANSYS, Canonsburg, PA.
31.
Ferziger
,
J. H.
, and
Peric
,
M.
,
2002
,
Computational Methods for Fluid Dynamics
,
Springer-Verlag
, Heidelberg, Germany, Chap. 5.
32.
Lyons
,
K. M.
, and
Watson
,
K. A.
,
2001
, “
Visualizing Diffusion Flame Formation in the Wake of Partially Premixed Combustion
,”
ASME J. Energy Resour. Technol.
,
123
(
3
), pp.
221
227
.
33.
Karbasi
,
M.
, and
Wierzba
,
I.
,
1998
, “
Prediction and Validation of Blowout Limits of Co-Flowing Jet Diffusion Flames—Effect of Dilution
,”
ASME J. Energy Resour. Technol.
,
120
(
2
), pp.
167
171
.
You do not currently have access to this content.