A bluff body burner was investigated using computational fluid dynamics (CFD) to assess the effects of inlet turbulence intensity and compare the combustion characteristics with and without the bluff-body modeled in the computational domain. The effects of the CFD modeling techniques were assessed for inlet turbulence intensity, using a two-dimensional (2D) versus three-dimensional (3D) computational domain, and whether to include the bluff body in the domain. The simulations were compared with experimental data from the Turbulent Nonpremixed Flames workshop. The results showed that the turbulence intensity specified as a boundary condition at the fuel-jet inlet had a substantial impact on the axial decay of mixture fraction and temperature, which was overlooked by previous researchers when the bluff body was not modeled. The numerical results of the 2D axisymmetric and 3D domains without the bluff body showed that the 3D domain provided the best predictions when the turbulence intensity was defined using a published correlation versus experimental estimates since the k–ε turbulence model underestimated dissipation. It was shown that a 2D axisymmetric domain can be used to obtain predictions with acceptable numerical errors without the inclusion of the bluff body, and that a uniform inlet velocity can be specified, provided that the inlet turbulence intensity is defined using the correlation by Durst et al. (“Methods to Set Up and Investigate Low Reynolds Number, Fully Developed Turbulent Plane Channel Flows,” ASME J. Fluids Eng., 120(3), pp. 496–503.). Finally, further analysis of flow and flame characteristics demonstrated that when the bluff-body was included for the 2D axisymmetric domain, predictions improved and the flow was insensitive to inlet turbulence intensities because the bluff-body provided an entrance region for the flow to develop before mixing, thus reducing inlet effects. Thus, if experimental inlet data are not available, the addition of the bluff-body in the computational domain provides a more accurate jet velocity profile entering the reacting domain and eliminates errors caused by the inlet boundary condition.

References

References
1.
Echekki
,
T.
, and
Mastorakos
,
E.
,
2010
,
Turbulent Combustion Modeling: Advances, New Trends and Perspectives
,
Springer Science & Business Media
,
Berlin, Germany
.
2.
Lu
,
X.
,
Han
,
D.
, and
Huang
,
Z.
,
2011
, “
Fuel Design and Management for the Control of Advanced Compression-Ignition Combustion Modes
,”
Prog. Energy Combust. Sci.
,
37
(
6
), pp.
741
783
.
3.
Pope
,
S.
,
1991
, “
Computations of Turbulent Combustion: Progress and Challenges
,”
Symp. (Int.) Combust.
,
23
(
1
), pp.
591
612
.
4.
Lu
,
T.
, and
Law
,
C. K.
,
2009
, “
Toward Accommodating Realistic Fuel Chemistry in Large-Scale Computations
,”
Prog. Energy Combust. Sci.
,
35
(
2
), pp.
192
215
.
5.
Delarue
,
B.
, and
Pope
,
S.
,
1997
, “
Application of PDF Methods to Compressible Turbulent Flows
,”
Phys. Fluids (1994-Present)
,
9
(
9
), pp.
2704
2715
.
6.
Mongia
,
H. C.
,
2001
, “
A Synopsis of Gas Turbine Combustor Design Methodology Evolution of Last 25 Years
,” ISABE 2001 Conference, Bangalore, India, Paper No. ISABE-2001-1086, p.
58
.
7.
Stöllinger
,
M.
, and
Heinz
,
S.
,
2008
, “
PDF Modeling and Simulation of Premixed Turbulent Combustion
,”
Monte Carlo Methods Appl.
,
14
(
4
), pp.
343
377
.
8.
Dally
,
B. B.
,
Feltcher
,
D. F.
, and
Masri
,
A. R.
,
1998
, “
Flow and Mixing Fields of Turbulent Bluff-Body Jets and Flames
,”
Combust. Theory Modell.
,
2
(
2
), pp.
193
219
.
9.
Merci
,
B.
,
Langhe
,
C. D.
,
Lodefier
,
K.
, and
Dick
,
E.
,
2004
, “
Axisymmetric Impingement Heat Transfer With a Nonlinear k–e Model
,”
J. Thermophys. Heat Transfer
,
18
(
1
), pp.
100
107
.
10.
Mardani
,
A.
, and
Tabejamaat
,
S.
,
2010
, “
Effect of Hydrogen on Hydrogen-Methane Turbulent Non-Premixed Flame Under Mild Condition
,”
Int. J. Energy Res.
,
35
(
20
), pp.
11324
11331
.
11.
Gran
,
I. R.
, and
Magnussen
,
B. F.
,
1996
, “
A Numerical Study of a Bluff-Body Stabilized Diffusion Flame—Part 1: Influence of Turbulence Modeling and Boundary Conditions
,”
Combust. Sci. Technol.
,
119
(
1–6
), pp.
171
190
.
12.
Correa
,
S. M.
, and
Gulati
,
A.
,
1992
, “
Measurements and Modeling of a Bluff Body Stabilized Flame
,”
Combust. Flame
,
89
(
2
), pp.
195
213
.
13.
Ligrani
,
P. M.
,
Burges
,
N. K.
, and
Won
,
S. Y.
,
2004
, “
Nusselt Numbers and Flow Structure on and Above a Shallow Dimpled Surface Within a Channel Including Effects of Inlet Turbulence Intensity Level
,”
ASME J. Turbomach.
,
127
(
2
), pp.
321
330
.
14.
Hossain
,
M.
,
1999
, “
CFD Modelling of Turbulent Non-Premixed Combustion
,”
Doctor of Philosophy thesis
, Loughborough University, Loughborough, UK.
15.
Sundaram
,
S. S.
,
Babu
,
V.
,
Obulesu
,
C.
, and
Sivakumar
,
R.
,
2012
, “
Three-Dimensional Numerical Simulations of Turbulent, Bluff-Body Stabilized, Lean, Premixed Combustion
,”
Combust. Sci. Technol.
,
184
(
3
), pp.
351
373
.
16.
Li
,
T.
,
Pannala
,
S.
, and
Shahnam
,
M.
,
2014
, “
CFD Simulations of Circulating Fluidized Bed Risers, Part II, Evaluation of Differences Between 2D and 3D Simulations
,”
Powder Technol.
,
254
(
3
), pp.
115
124
.
17.
Liu
,
J.
,
Shang
,
H. M.
, and
Chen
,
Y. S.
,
2000
, “
Development of an Unstructured Radiation Model Applicable for Two-Dimensional Planar, Axisymmetric and Three-Dimensional Geometries
,”
J. Quant. Spectrosc. Radiat. Transfer
,
66
(
1
), pp.
17
33
.
18.
Liu
,
K.
,
Pope
,
S. B.
, and
Caughey
,
D. A.
,
2005
, “
Calculations of Bluff-Body Stabilized Flames Using a Joint Probability Density Function Model With Detailed Chemistry
,”
Combust. Flame
,
141
(
1–2
), pp.
89
117
.
19.
Frassoldati
,
A.
,
Sharma
,
P.
,
Cuoci
,
A.
,
Faravelli
,
T.
, and
Ranzi
,
E.
,
2010
, “
Kinetic and Fluid Dynamics Modeling of Methane/Hydrogen Jet Flames in Diluted Coflow
,”
Appl. Therm. Eng.
,
30
(
4
), pp.
376
383
.
20.
Fukumoto
,
K.
, and
Ogami
,
Y.
,
2012
, “
Combustion Simulation Technique for Reducing Chemical Mechanisms Using Look-Up Table of Chemical Equilibrium Calculations: Application to CO-H2-Air Turbulent Non-Premixed Flame
,”
Comput. Fluids
,
66
(
15
), pp.
98
106
.
21.
Meester
,
R. D.
,
Naud
,
B.
,
Maas
,
U.
, and
Merci
,
B.
,
2012
, “
Transported Scalar PDF Calculations of a Swirling Bluff Body Flame (‘SM1’) With a Reaction Diffusion Manifold
,”
Combust. Flame
,
159
(
7
), pp.
2415
2429
.
22.
Ren
,
Z.
,
Goldin
,
G. M.
,
Hiremath
,
V.
, and
Pope
,
S. B.
,
2013
, “
Simulations of a Turbulent Non-Premixed Flame Using Combined Dimention Reduction and Tabulation for Combustion Chemistry
,”
Fuel
,
105
(
3
), pp.
636
644
.
23.
Ziani
,
L.
,
Chaker
,
A.
,
Chetehouna
,
K.
,
Malek
,
A.
, and
Mahmah
,
B.
,
2013
, “
Numerical Simulations of Non-Premixed Turbulent Combustion of CH4-H2 Mixtures Using the PDF Approach
,”
Int. J. Hydrogen Energy
,
38
(
20
), pp.
8597
8603
.
24.
Kim
,
M. Y.
, and
Baek
,
S. W.
,
2005
, “
Modeling of Radiative Heat Transfer in an Axisymmetric Cylindrical Enclosure With Participating Medium
,”
J. Quant. Spectrosc. Radiat. Transfer
,
90
(
3
), pp.
377
388
.
25.
Reuge
,
N.
,
Cadoret
,
L.
,
Coufort-Saudejaud
,
C.
,
Pannala
,
S.
,
Syamlal
,
M.
, and
Caussat
,
B.
,
2008
, “
Multifluid Eulerian Modeling of Dense Gas–Solids Fluidized Bed Hydrodynamics: Influence of the Dissipation Parameters
,”
Chem. Eng. Sci.
,
63
(
22
), pp.
5540
5551
.
26.
Xie
,
N.
,
Battaglia
,
F.
, and
Pannala
,
S.
,
2008
, “
Effects of Using Two-Versus Three-Dimensional Computational Modeling of Fluidized Beds: Part I, Hydrodynamics
,”
Powder Technol.
,
182
(
1
), pp.
1
13
.
27.
Xie
,
N.
,
Battaglia
,
F.
, and
Pannala
,
S.
,
2008
, “
Effects of Using Two-Versus Three-Dimensional Computational Modeling of Fluidized Beds: Part II, Budget Analysis
,”
Powder Technol.
,
182
(
1
), pp.
14
24
.
28.
Cammarata
,
L.
,
Lettieri
,
P.
,
Micale
,
G. D. M.
, and
Colman
,
D.
,
2003
, “
2D and 3D CFD Simulations of Bubbling Fluidized Beds Using Eulerian–Eulerian Models
,”
Int. J. Chem. React. Eng.
,
1
(
1
), pp.
1542
6580
.
29.
Jenny
,
P.
,
Muradoglu
,
M.
,
Liu
,
K.
,
Pope
,
S.
, and
Caughey
,
D.
,
2001
, “
PDF Simulations of a Bluff-Body Stabilized Flow
,”
J. Comput. Phys.
,
169
(
1
), pp.
1
23
.
30.
Hossain
,
M.
,
Jones
,
J.
, and
Malalasekera
,
W.
,
2001
, “
Modelling of a Bluff-Body Nonpremixed Flame Using a Coupled Radiation/Flamelet Combustion Model
,”
Flow, Turbul. Combust.
,
67
(
3
), pp.
217
234
.
31.
Medici
,
D.
, and
Alfredsson
,
P.
,
2006
, “
Measurements on a Wind Turbine Wake: 3D Effects and Bluff Body Vortex Shedding
,”
Wind Energy
,
9
(
3
), pp.
219
236
.
32.
Roshko
,
A.
,
1954
, “
On the Drag and Shedding Frequency of Two-Dimensional Bluff Bodies
,” National Advisory Committee for Aeronautics, Washington, DC,
Report No. NACA TN 3169
.
33.
Hackett
,
J.
, and
Cooper
,
K.
,
2001
, “
Extensions to Maskell's Theory for Blockage Effects on Bluff Bodies in a Closed Wind Tunnel
,”
Aeronaut. J.
,
105
(
1050
), pp.
409
418
.
34.
Fan
,
A.
,
Wan
,
J.
,
Liu
,
Y.
,
Pi
,
B.
,
Yao
,
H.
, and
Liu
,
W.
,
2014
, “
Effect of Bluff Body Shape on the Blow-Off Limit of Hydrogen/Air Flame in a Planar Micro-Combustor
,”
Appl. Therm. Eng.
,
62
(
1
), pp.
13
19
.
35.
Sandia National Laboratories
,
2014
, “
International Workshop on Measurement and Computation of Turbulent Nonpremixed Flames, TNF Workshop
,”
Sandia National Laboratories
, Albuquerque, NM.
36.
Öztürk
,
B.
, and
Schobeiri
,
M. T.
,
2007
, “
Effect of Turbulence Intensity and Periodic Unsteady Wake Flow Condition on Boundary Layer Development, Separation, and Reattachment Along the Suction Surface of a Low-Pressure Turbine Blade
,”
ASME J. Fluids Eng.
,
129
(
6
), pp.
747
763
.
37.
Ansys
,
2003
, “
Fluent User's Manual
,”
ANSYS, Inc.
,
Lebanon, NH
.
38.
Pope
,
S. B.
,
1985
, “
PDF Methods for Turbulent Reactive Flows
,”
Prog. Energy Combust. Sci.
,
11
(
2
), pp.
119
192
.
39.
ANSYS
,
2009
, “
Determining Turbulence Parameters, Fluent User's Guide
,”
ANSYS, Inc.
,
Lebanon, NH
.
40.
Chen
,
L.
, and
Battaglia
,
F.
,
2015
, “
The Effects of Fuel Mixtures in Non-Premixed Combustion for a Bluff-Body Flame
,”
ASME J. Energy Resour. Technol.
,
138
(
2
), p.
022204
.
41.
Jones
,
W. P.
, and
Launder
,
B. E.
,
1972
, “
The Prediction of Laminarization With a Two-Equation Model of Turbulence
,”
Int. J. Heat Mass Transfer
,
15
(
2
), pp.
301
314
.
42.
Durst
,
F.
,
Fischer
,
M.
,
Jovanović
,
J.
, and
Kikura
,
H.
,
1998
, “
Methods to Set Up and Investigate Low Reynolds Number, Fully Developed Turbulent Plane Channel Flows
,”
ASME J. Fluids Eng.
,
120
(
3
), pp.
496
503
.
43.
Shih
,
T. H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New k-ε Eddy Viscosity Model for High Reynolds Number Turbulent Flows
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
.
44.
Dibble
,
R.
,
Warnatz
,
J.
, and
Maas
,
U.
,
1996
,
Combustion: Physical and Chemical Fundamentals, Modelling and Simulations, Experiments, Pollutant Formation
,
Springer
,
New York
.
45.
Han
,
Z.
, and
Reitz
,
R. D.
,
1995
, “
Turbulence Modeling of Internal Combustion Engines Using RNG k-Epsilon Models
,”
Combust. Sci. Technol.
,
106
(
4–6
), pp.
267
295
.
46.
Liu
,
S.
,
Hewson
,
J. C.
,
Chen
,
J. H.
, and
Pitsch
,
H.
,
2004
, “
Effects of Strain Rate on High-Pressure Nonpremixed n-Heptane Autoignition in Counterflow
,”
Combust. Flame
,
137
(
3
), pp.
320
339
.
47.
Munson
,
B. R.
,
Young
,
D. F.
, and
Okiishi
,
T. H.
,
2005
,
Fundamentals of Fluid Mechanics
,
5th ed.
,
Wiley
,
Hoboken, NJ
.
You do not currently have access to this content.