Gas-to-liquid (GTL), an alternative synthetic jet fuel derived from natural gas through Fischer–Tropsch (F–T) process, has gained significant attention due to its cleaner combustion characteristics when compared to conventional counterparts. The effect of chemical composition on key performance aspects such as ignition delay, laminar burning speed, and emission characteristics has been experimentally studied. However, the development of chemical mechanism to predict those parameters for GTL fuel is still in its early stage. The GTL aviation fuel from Syntroleum Corporation, S-8, is used in this study. For theoretical predictions, a mixture of 32% iso-octane, 25% n-decane, and 43% n-dodecane by volume is considered as the surrogate for S-8 fuel. In this work, a detailed kinetics model (DKM) has been developed based on the chemical mechanisms reported for the GTL fuel. The DKM is employed in a constant internal energy and constant volume reactor to predict the ignition delay times for GTL over a wide range of temperatures, pressures, and equivalence ratios. The ignition delay times predicted using DKM are validated with those reported in the literature. Furthermore, the steady one-dimensional premixed flame code from CANTERA is used in conjunction with the chemical mechanisms to predict the laminar burning speeds for GTL fuel over a wide range of operating conditions. Comparison of ignition delay and laminar burning speed shows that the Ranzi et al. mechanism has a better agreement with the available experimental data, and therefore is used for further evaluation in this study.

References

1.
Bao
,
B.
,
El-Halwagi
,
M. M.
, and
Elbashir
,
N. O.
,
2010
, “
Simulation, Integration, and Economic Analysis of Gas-to-Liquid Processes
,”
Fuel Process. Technol.
,
91
(
7
), pp.
703
713
.
2.
Abdel-Kreem
,
M.
,
Bassyouni
,
M.
,
Abdel-Hamid
,
S. M.-S.
, and
Abdel-Aal
,
H.
,
2009
, “
The Role of GTL Technology as an Option to Exploit Natural Gas Resources
,”
Open Fuel Cells J.
,
2
(
1
), pp.
5
10
.
3.
Askari
,
O.
,
Metghalchi
,
H.
,
Kazemzadeh Hannani
,
S.
,
Moghaddas
,
A.
,
Ebrahimi
,
R.
, and
Hemmati
,
H.
,
2012
, “
Fundamental Study of Spray and Partially Premixed Combustion of Methane/Air Mixture
,”
ASME J. Energy Resour. Technol.
,
135
(
2
), p.
021001
.
4.
Askari
,
O.
,
Metghalchi
,
H.
,
Kazemzadeh Hannani
,
S.
,
Hemmati
,
H.
, and
Ebrahimi
,
R.
,
2014
, “
Lean Partially Premixed Combustion Investigation of Methane Direct-Injection Under Different Characteristic Parameters
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
022202
.
5.
Askari
,
O.
,
Hannani
,
S. K.
, and
Ebrahimi
,
R.
,
2012
, “
Improvement and Experimental Validation of a Multi-Zone Model for Combustion and NO Emissions in CNG Fueled Spark Ignition Engine
,”
J. Mech. Sci. Technol.
,
26
(
4
), pp.
1205
1212
.
6.
Askari
,
O.
,
Beretta
,
G. P.
,
Eisazadeh-Far
,
K.
, and
Metghalchi
,
H.
,
2016
, “
On the Thermodynamic Properties of Thermal Plasma in the Flame Kernel of Hydrocarbon/Air Premixed Gases
,”
Eur. Phys. J. D
(in press).
7.
Hobbs
,
H. O. J.
, and
Adair
,
L. S.
,
2012
, “
Gas-to-Liquids Plants Offer Great ROI
,” The American Oil & Gas Reporter, Haysville, KS.
8.
Udaeta
,
M. E. M.
,
Burani
,
G. F.
,
Arzabe Maure
,
J. O.
, and
Oliva
,
C. R.
,
2007
, “
Economics of Secondary Energy From GTL Regarding Natural Gas Reserves of Bolivia
,”
Energy Policy
,
35
(
8
), pp.
4095
4106
.
9.
Economides
,
M.
,
2005
, “
The Economics of Gas to Liquids Compared to Liquefied Natural Gas
,”
World Energy
,
8
(
1
), pp.
136
140
.
10.
Moon
,
G.
,
Lee
,
Y.
,
Choi
,
K.
, and
Jeong
,
D.
,
2010
, “
Emission Characteristics of Diesel, Gas to Liquid, and Biodiesel-Blended Fuels in a Diesel Engine for Passenger Cars
,”
Fuel
,
89
(
12
), pp.
3840
3846
.
11.
Hassaneen
,
A.
,
Munack
,
A.
,
Ruschel
,
Y.
,
Schroeder
,
O.
, and
Krahl
,
J.
,
2012
, “
Fuel Economy and Emission Characteristics of Gas-to-Liquid (GTL) and Rapeseed Methyl Ester (RME) as Alternative Fuels for Diesel Engines
,”
Fuel
,
97
, pp.
125
130
.
12.
Abu-Jrai
,
A.
,
Rodríguez-Fernández
,
J.
,
Tsolakis
,
A.
,
Megaritis
,
A.
,
Theinnoi
,
K.
,
Cracknell
,
R. F.
, and
Clark
,
R. H.
,
2009
, “
Performance, Combustion and Emissions of a Diesel Engine Operated With Reformed EGR. Comparison of Diesel and GTL Fuelling
,”
Fuel
,
88
(
6
), pp.
1031
1041
.
13.
Li
,
X.
,
Huang
,
Z.
,
Wang
,
J.
, and
Zhang
,
W.
,
2007
, “
Particle Size Distribution From a GTL Engine
,”
Sci. Total Environ.
,
382
(
2–3
), pp.
295
303
.
14.
Alleman
,
T. L.
,
Eudy
,
L.
,
Miyasato
,
M.
,
Oshinuga
,
A.
,
Allison
,
S.
,
Corcoran
,
T.
,
Chatterjee
,
S.
,
Jacobs
,
T.
,
Matthey
,
J.
,
Cherrillo
,
R. A.
,
Clark
,
R.
,
Virrels
,
I.
,
Nine
,
R.
,
Wayne
,
S.
, and
Lansing
,
R.
,
2004
, “
Fuel Property, Emission Test, and Operability Results From a Fleet of Class 6 Vehicles Operating on Gas-to-Liquid Fuel and Catalyzed Diesel Particle Filters South Coast Air Quality Management District
,” SAE Technical Paper No. 2004-01-2959.
15.
Alleman
,
T. L.
,
Tennant
,
C. J.
,
Hayes
,
R. R.
,
Barton
,
G.
,
Rumminger
,
M.
,
Duggal
,
V.
,
Nelson
,
C.
,
May
,
M.
, and
Cherrillo
,
R. A.
,
2005
, “
Achievement of Low Emissions by Engine Modification to Utilize Gas-to-Liquid Fuel and Advanced Emission Controls on a Class 8 Truck
,” SAE Technical Paper No. 2005-01-3766.
16.
Alleman
,
T. L.
,
Barnitt
,
R.
,
Eudy
,
L.
,
Corcoran
,
T.
,
Cherrillo
,
R. A.
,
Clark
,
N.
, and
Wayne
,
W. S.
,
2005
, “
Final Operability and Chassis Emissions Results from a Fleet of Class 6 Trucks Operating on Gas-to-Liquid Fuel and Catalyzed Diesel Particle Filters
,” SAE Technical Paper No. 2005-01-3769.
17.
Mancaruso
,
E.
, and
Vaglieco
,
B. M.
,
2012
, “
Premixed Combustion of GTL and RME Fuels in a Single Cylinder Research Engine
,”
Appl. Energy
,
91
(
1
), pp.
385
394
.
18.
Hajialimohammadi
,
A.
,
Ahmadisoleymani
,
S.
,
Abdullah
,
A.
,
Askari
,
O.
, and
Rezai
,
F.
,
2012
, “
Design and Manufacturing of a Constant Volume Test Combustion Chamber for Jet and Flame Visualization of CNG Direct Injection
,”
Appl. Mech. Mater.
,
217–219
, pp.
2539
2545
.
19.
Kahandawala
,
M. S. P.
,
DeWitt
,
M. J.
,
Corporan
,
E.
, and
Sidhu
,
S. S.
,
2008
, “
Ignition and Emission Characteristics of Surrogate and Practical Jet Fuels
,”
Energy Fuels
,
22
(
6
), pp.
3673
3679
.
20.
Balagurunathan
,
J.
,
Flora
,
G.
,
Saxena
,
S.
,
Kahandawala
,
M.
,
DeWitt
,
M.
,
Sidhu
,
S.
, and
Corporan
,
E.
,
2011
, “
Ignition Delay Times of a Range of Alternate Jet Fuels and Surrogate Fuel Candidate Hydrocarbons Under Fuel-Lean Conditions: A Shock Tube Study
,”
AIAA
Paper No. 2011-696.
21.
Kumar
,
K.
, and
Sung
,
C. J.
,
2010
, “
A Comparative Experimental Study of the Autoignition Characteristics of Alternative and Conventional Jet Fuel/Oxidizer Mixtures
,”
Fuel
,
89
(
10
), pp.
2853
2863
.
22.
Kumar
,
K.
,
Sung
,
C. J.
, and
Hui
,
X.
,
2011
, “
Laminar Flame Speeds and Extinction Limits of Conventional and Alternative Jet Fuels
,”
Fuel
,
90
(
3
), pp.
1004
1011
.
23.
Wang
,
H.
, and
Oehlschlaeger
,
M. A.
,
2012
, “
Autoignition Studies of Conventional and Fischer-Tropsch Jet Fuels
,”
Fuel
,
98
, pp.
249
258
.
24.
Kannaiyan
,
K.
, and
Sadr
,
R.
,
2014
, “
Experimental Investigation of Spray Characteristics of Alternative Aviation Fuels
,”
Energy Convers. Manage.
,
88
, pp.
1060
1069
.
25.
Fyffe
,
D.
,
Moran
,
J.
,
Kannaiyan
,
K.
,
Sadr
,
R.
, and
Al-Sharshani
,
A.
,
2011
, “
Effect of GTL-Like Jet Fuel Composition on GT Engine Altitude Ignition Performance: Part I—Combustor Operability
,”
ASME
Paper No. GT2011-45487.
26.
Mosbach
,
T.
,
Gebel
,
G. C.
,
Le Clercq
,
P.
,
Sadr
,
R.
,
Kannaiyan
,
K.
, and
Al-Sharshani
,
A.
,
2011
, “
Investigation of GTL-Like Jet Fuel Composition on GT Engine Altitude Ignition and Combustion Performance: Part II—Detailed Diagnostics
,”
ASME
Paper No. GT2011-45510.
27.
Kick
,
T.
,
Herbst
,
J.
,
Kathrotia
,
T.
,
Marquetand
,
J.
,
Braun-Unkhoff
,
M.
,
Naumann
,
C.
, and
Riedel
,
U.
,
2012
, “
An Experimental and Modeling Study of Burning Velocities of Possible Future Synthetic Jet Fuels
,”
Energy
,
43
(
1
), pp.
111
123
.
28.
Hui
,
X.
,
Kumar
,
K.
,
Sung
,
C. J.
,
Edwards
,
T.
, and
Gardner
,
D.
,
2012
, “
Experimental Studies on the Combustion Characteristics of Alternative Jet Fuels
,”
Fuel
,
98
, pp.
176
182
.
29.
Vukadinovic
,
V.
,
Habisreuther
,
P.
, and
Zarzalis
,
N.
,
2012
, “
Experimental Study on Combustion Characteristics of Conventional and Alternative Liquid Fuels
,”
ASME J. Eng. Gas Turbines Power
,
134
(
12
), p.
121504
.
30.
Ji
,
C.
,
Wang
,
Y. L.
, and
Egolfopoulos
,
F. N.
,
2011
, “
Flame Studies of Conventional and Alternative Jet Fuels
,”
J. Propul. Power
,
27
(
4
), pp.
856
863
.
31.
Singh
,
D.
,
Nishiie
,
T.
, and
Qiao
,
L.
,
2010
, “
Laminar Burning Speeds and Markstein Lengths of n-Decane/Air, n-Decane/O2/He, Jet-A/Air and S-8/Air Flames
,”
AIAA
Paper No. 2010-951.
32.
Huber
,
M. L.
,
Smith
,
B. L.
,
Ott
,
L. S.
, and
Bruno
,
T. J.
,
2008
, “
Surrogate Mixture Model for the Thermophysical Properties of Synthetic Aviation Fuel S-8: Explicit Application of the Advanced Distillation Curve
,”
Energy Fuels
,
22
(
2
), pp.
1104
1114
.
33.
Naik
,
C. V.
,
Puduppakkam
,
K. V.
,
Modak
,
A.
,
Meeks
,
E.
,
Wang
,
Y. L.
,
Feng
,
Q.
, and
Tsotsis
,
T. T.
,
2011
, “
Detailed Chemical Kinetic Mechanism for Surrogates of Alternative Jet Fuels
,”
Combust. Flame
,
158
(
3
), pp.
434
445
.
34.
Dooley
,
S.
,
Won
,
S. H.
,
Jahangirian
,
S.
,
Ju
,
Y.
,
Dryer
,
F. L.
,
Wang
,
H.
, and
Oehlschlaeger
,
M. A.
,
2012
, “
The Combustion Kinetics of a Synthetic Paraffinic Jet Aviation Fuel and a Fundamentally Formulated, Experimentally Validated Surrogate Fuel
,”
Combust. Flame
,
159
(
10
), pp.
3014
3020
.
35.
Slavinskaya
,
N.
,
Riedel
,
U.
,
Saibov
,
E.
,
Herzler
,
J.
, and
Naumann
,
C.
,
2014
, “
Kinetic Surrogate Model for GTL Kerosene
,”
AIAA
Paper No. 2014-0126.
36.
Yu
,
J.
,
Wang
,
Z.
,
Wang
,
W.
, and
Gou
,
X.
,
2016
, “
Surrogate Definition and Chemical Kinetic Modeling for Fischer-Tropsch Fuels
,”
Energy Fuels
,
30
(
2
), pp.
1375
1382
.
37.
Dagaut
,
P.
,
Karsenty
,
F.
,
Dayma
,
G.
,
Diévart
,
P.
,
Hadj-Ali
,
K.
,
Mzé-Ahmed
,
A.
,
Braun-Unkhoff
,
M.
,
Herzler
,
J.
,
Kathrotia
,
T.
,
Kick
,
T.
,
Naumann
,
C.
,
Riedel
,
U.
, and
Thomas
,
L.
,
2014
, “
Experimental and Detailed Kinetic Model for the Oxidation of a Gas to Liquid (GtL) Jet Fuel
,”
Combust. Flame
,
161
(
3
), pp.
835
847
.
38.
Dagaut
,
P.
,
Dayma
,
G.
,
Diévart
,
P.
,
Hadj-Ali
,
K.
, and
Mzé-Ahmed
,
A.
,
2014
, “
Combustion of a Gas-to-Liquid–Based Alternative Jet Fuel: Experimental and Detailed Kinetic Modeling
,”
Combust. Sci. Technol.
,
186
(
10–11
), pp.
1275
1283
.
39.
Mzé-Ahmed
,
A.
,
Dagaut
,
P.
,
Dayma
,
G.
, and
Diévart
,
P.
,
2014
, “
Kinetics of Oxidation of a 100% Gas-to-Liquid Synthetic Jet Fuel and a Mixture GtL/1-Hexanol in a Jet-Stirred Reactor: Experimental and Modeling Study
,”
ASME J. Eng. Gas Turbines Power
,
137
(
1
), p.
011503
.
40.
Zhu
,
Y.
,
Li
,
S.
,
Davidson
,
D. F.
, and
Hanson
,
R. K.
,
2014
, “
Ignition Delay Times of Conventional and Alternative Fuels Behind Reflected Shock Waves
,”
Proc. Combust. Inst.
,
35
(
1
), pp.
241
248
.
41.
Moses
,
C. A.
,
2008
, “
Comparative Evaluation of Semi-Synthetic Jet Fuels
,” Coordinating Research Council, Alpharetta, GA, Contract No. F33415-02-D-2299.
42.
Edwards
,
T.
,
Minus
,
D.
,
Harrison
,
W.
,
Corporan
,
E.
,
DeWitt
,
M.
,
Zabarnick
,
S.
, and
Balster
,
L.
,
2004
, “
Fischer-Tropsch Jet Fuels—Characterization for Advanced Aerospace Applications
,”
AIAA
Paper No. 2004-3885.
43.
Ranzi
,
E.
,
Frassoldati
,
A.
,
Grana
,
R.
,
Cuoci
,
A.
,
Faravelli
,
T.
,
Kelley
,
A. P.
, and
Law
,
C. K.
,
2012
, “
Hierarchical and Comparative Kinetic Modeling of Laminar Flame Speeds of Hydrocarbon and Oxygenated Fuels
,”
Prog. Energy Combust. Sci.
,
38
(
4
), pp.
468
501
.
44.
Beretta
,
G. P.
,
Keck
,
J. C.
,
Janbozorgi
,
M.
, and
Metghalchi
,
H.
,
2012
, “
The Rate-Controlled Constrained-Equilibrium Approach to Far-From-Local-Equilibrium Thermodynamics
,”
Entropy
,
14
(
2
), pp.
92
130
.
45.
Goodwin
,
D.
,
Moffat
,
H.
, and
Speth
,
R.
,
2015
, “
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes
,” Cantera, http://www.cantera.org
46.
Rokni
,
E.
,
Moghaddas
,
A.
,
Askari
,
O.
, and
Metghalchi
,
H.
,
2014
, “
Measurement of Laminar Burning Speeds and Investigation of Flame Stability of Acetylene (C2H2)/Air Mixtures
,”
ASME J. Energy Resour. Technol.
,
137
(
1
), p.
012204
.
47.
Askari
,
O.
,
Janbozorgi
,
M.
,
Greig
,
R.
,
Moghaddas
,
A.
, and
Metghalchi
,
H.
,
2015
, “
Developing Alternative Approaches to Predicting the Laminar Burning Speed of Refrigerants Using the Minimum Ignition Energy
,”
Sci. Technol. Built Environ.
,
21
(
2
), pp.
220
227
.
48.
Askari
,
O.
,
Vien
,
K.
,
Wang
,
Z.
,
Sirioa
,
M.
, and
Metghalchi
,
H.
,
2016
, “
Exhaust Gas Recirculation Effects on Flame Structure and Laminar Burning Speeds of H2/CO/air Flames at High Pressures and Temperatures
,”
J. Appl. Energy
(in press).
49.
Askari
,
O.
,
Elia
,
M.
,
Ferrari
,
M.
, and
Metghalchi
,
H.
,
2016
, “
Auto-Ignition Characteristics Study of Gas-to-Liquid Fuel at High Pressures and Low Temperatures
,”
Journal of Energy Resources Technology, ASME J. Energy Res. Tech.
(accepted).
50.
Askari
,
O.
,
Moghaddas
,
A.
,
Alholm
,
A.
,
Vein
,
K.
,
Alhazmi
,
B.
, and
Metghalchi
,
H.
,
2016
, “
Laminar Burning Speed Measurement and Flame Instability Study of H2/CO/Air Mixtures at High Temperatures and Pressures Using a Novel Multi-Shell Model
,”
Combust. Flames
,
168
, pp.
20
31
.
You do not currently have access to this content.