This paper analyzes the feasibility of applying model predictive control strategies for mitigation of the auto-ignition phenomenon, which affects the performance of spark-ignition internal combustion engines. The first part of this paper shows the implementation and experimental validation of a two-dimensional model, based on thermodynamic equations, to simulate operating conditions in engines fueled with natural gas. Over this validated model, several control strategies are studied in order to evaluate, through simulation analysis, which of these offer the best handling capacity of the auto-ignition phenomenon. In order to achieve this goal, multivariate control strategies are implemented for a simultaneous manipulation of the fuel/air ratio, the crank angle at ignition, and the inlet pressure. The controlled variable in this research is the temperature at the ignition point. This temperature is obtained through an estimation based on pressure in the combustion chamber at that point, which is located toward the end zone of the compression stroke. If the ignition temperature of the fuel–air mixture is reached during the compression process, then auto-ignition takes place. Proposed control strategies consist of maintaining the temperature in the ignition point below the fuel–air mixture auto-ignition temperature. The results show that auto-ignition is difficult to avoid using a single input–single output (SISO) strategy. However, a multiple input–single output (MISO) approach avoids the influence of the phenomenon without a significant impact over the engine's performance. Among the developed strategies, an approach based on model predictive control and feedforward control strategy shows the best performance, measured through the integral absolute error (IAE) index. These results open the possibility of new ways for improving the control capacity of auto-ignition phenomenon in engines compared to currently available feedback control systems.

References

References
1.
Pipitone
,
E.
, and
Beccari
,
S.
,
2009
, “
Performances Improvement of a SI CNG Bi-Fuel Engine by Means of Double-Fuel Injection
,”
SAE
Technical Paper No. 2009-24-0058.
2.
Bradley
,
D.
, and
Morley
,
C.
,
1997
, “
Autoignition in Spark-Ignition Engines
,”
Low-Temperature Combustion and Autoignition (Comprehensive Chemical Kinetics)
, Vol.
35
,
M.
Pilling
, ed.,
Elsevier
, UK, pp.
661
760
.
3.
Wang
,
Z.
,
Liu
,
H.
,
Long
,
Y.
,
Wang
,
J.
, and
He
,
X.
,
2015
, “
Comparative Study on Alcohols–Gasoline and Gasoline–Alcohols Dual-Fuel Spark Ignition (DFSI) Combustion for High Load Extension and High Fuel Efficiency
,”
Energy
,
82
(1), pp.
395
405
.
4.
Rahmouni
,
C.
,
Brecq
,
G.
,
Tazerout
,
M.
, and
Le Corre
,
O.
,
2004
, “
Knock Rating of Gaseous Fuels in a Single Cylinder Spark Ignition Engine
,”
Fuel
,
83
(
3
), pp.
327
336
.
5.
Cho
,
G.
,
Jeong
,
D.
,
Moon
,
G.
, and
Bae
,
C.
,
2010
, “
Controlled Auto-Ignition Characteristics of Methane–Air Mixture in a Rapid Intake Compression and Expansion Machine
,”
Energy
,
35
(
10
), pp.
4184
4191
.
6.
Saikaly
,
K.
,
Le Corre
,
O.
,
Rahmouni
,
C.
, and
Truffet
,
L.
,
2010
, “
Preventive Knock Protection Technique for Stationary SI Engines Fuelled by Natural Gas
,”
Fuel Process. Technol.
,
91
(
6
), pp.
641
652
.
7.
Pipitone
,
E.
, and
Beccari
,
S.
,
2009
, “
Calibration of a Knock Prediction Model for the Combustion of Gasoline-Natural Gas Mixtures
,”
ASME
Paper No. ICEF2009-14057.
8.
Soylu
,
S.
, and
Van Gerpen
,
J.
,
2003
, “
Development of an Autoignition Submodel for Natural Gas Engines
,”
Fuel
,
82
(
14
), pp.
1699
1707
.
9.
Guzzella
,
L.
, and
Onder
,
C.
,
2009
,
Introduction to Modeling and Control of Internal Combustion Engine Systems
,
Springer Science & Business Media
, Berlin, Heidelberg, Germany.
10.
Yue
,
S.
, and
Li
,
P.
,
2004
, “
Automatic Knock Control System
,”
WCICA 2004
, Fifth World Congress on Intelligent Control and Automation, Vol.
3
, June 15–19, pp.
2464
2466
.
11.
Yamasaki
,
Y.
,
Kanno
,
M.
,
Suzuki
,
Y.
, and
Kaneko
,
S.
,
2013
, “
Development of an Engine Control System Using City Gas and Biogas Fuel Mixture
,”
Appl. Energy
,
101
(1), pp.
465
474
.
12.
Duarte
,
J.
,
Amador
,
G.
,
Garcia
,
J.
,
Fontalvo
,
A.
,
Padilla
,
R. V.
,
Sanjuan
,
M.
, and
Quiroga
,
A. G.
,
2014
, “
Auto-Ignition Control in Turbocharged Internal Combustion Engines Operating With Gaseous Fuels
,”
Energy
,
71
(2), pp.
137
147
.
13.
McAllister
,
S.
,
Chen
,
J.
, and
Fernandez-Pello
,
A.
,
2011
,
Fundamentals of Combustion Processes
(Mechanical Engineering Series),
Springer
,
New York
.
14.
Woschni
,
G.
,
1967
, “
A Universally Applicable Equation for the Instantaneous Heat Transfer Coefficient in the Internal Combustion Engine
,”
SAE
Technical Paper No. 670931.
15.
Heywood
,
J.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
, New York.
16.
Lounici
,
M.
,
Loubar
,
K.
,
Balistrou
,
M.
, and
Tazerout
,
M.
,
2011
, “
Investigation on Heat Transfer Evaluation for a More Efficient Two-Zone Combustion Model in the Case of Natural Gas SI Engines
,”
Appl. Therm. Eng.
,
31
(
2
), pp.
319
328
.
17.
Rousseau
,
S.
,
Lemoult
,
B.
, and
Tazerout
,
M.
,
1999
, “
Combustion Characterization of Natural Gas in a Lean Burn Spark-Ignition Engine
,”
Proc. Inst. Mech. Eng., Part D
,
213
(
5
), pp.
481
489
.
18.
Malenshek
,
M.
, and
Olsen
,
D.
,
2009
, “
Methane Number Testing of Alternative Gaseous Fuels
,”
Fuel
,
88
(
4
), pp.
650
656
.
19.
Garcia
,
C. E.
, and
Morari
,
M.
,
1985
, “
Internal Model Control—2: Design Procedure for Multivariable Systems
,”
Ind. Eng. Chem. Process Des. Dev.
,
24
(
2
), pp.
472
484
.
20.
Rivera
,
D. E.
, and
Flores
,
M. E.
,
2004
, “
Internal Model Control
,”
Control Systems, Robotics and Automation, Encyclopedia of Life Support Systems (EOLSS)
, Vol.
6.43
,
H.
Unbehauen
, ed., Eolss Publishers, France.
21.
Sridhar
,
G.
,
Paul
,
P.
, and
Mukunda
,
H.
,
2004
, “
Simulation of Fluid Flow in a High Compression Ratio Reciprocating Internal Combustion Engine
,”
Proc. Inst. Mech. Eng., Part A
,
218
(
6
), pp.
403
416
.
22.
Marić
,
I.
,
Galović
,
A.
, and
Šmuc
,
T.
,
2005
, “
Calculation of Natural Gas Isentropic Exponent
,”
Flow Meas. Instrum.
,
16
(
1
), pp.
13
20
.
23.
Smith
,
C. A.
, and
Corripio
,
A. B.
,
1985
,
Principles and Practice of Automatic Process Control
, Vol.
2
,
Wiley
,
New York
.
24.
Skogestad
,
S.
, and
Postlethwaite
,
I.
,
2007
,
Multivariable Feedback Control: Analysis and Design
, Vol.
2
,
Wiley
,
New York
.
25.
Lapuerta
,
M.
,
Armas
,
O.
, and
Molina
,
S.
,
2003
, “
Study of the Compression Cycle of a Reciprocating Engine Through the Polytropic Coefficient
,”
Appl. Therm. Eng.
,
23
(
3
), pp.
313
323
.
26.
Molina
,
S. A.
,
2005
,
Influencia de los parámetros de inyección y la recirculación de gases de escape sobre el proceso de combustión en un motor diesel
,
Reverté
, Spain.
You do not currently have access to this content.