Complete quantitative data of the chemical (proximate, ultimate, and ash analyses) and mineral (in low-temperature ash (LTA) and various high-temperature ashes (HTA)) compositions of 21 coals were used to investigate the modes of occurrences and high-temperature behaviors of the minerals in coals and their influence on ash fusibility. The common minerals present in the low-temperature ashes (LTA) are kaolinite, quartz, muscovite, calcite, gypsum, pyrite, and siderite. The samples were divided into two groups according to the hemispherical temperature for a comparative study of the behavior of mineral matters. Results show that the average number of mineral species (ANMS) and amorphous substances (AS) in the LTAs of the two groups are essentially the same. The ANMS in both the low and high (ash fusion temperatures, AFT) ash samples go through the same tendency of a slight reduction at first, an increase, and finally, a significant reduction. As the temperature increases, the ANMS in the low-AFT ash is initially higher and then lower than the high-AFT ash, whereas the tendency of the AS is quite the opposite. The ash melting process is divided into three stages, and the AFTs are related to different degrees of the eutectic stage.

References

References
1.
Ni
,
W.
, and
Chen
,
Z.
,
2011
, “
Synergistic Utilization of Coal and Other Energy—Key to Low Carbon Economy
,”
Front. Energy
,
5
(
1
), pp.
1
19
.
2.
Qiu
,
J. R.
,
Li
,
F.
,
Zheng
,
Y.
,
Zheng
,
C. G.
, and
Zhou
,
H. C.
,
1999
, “
The Influences of Mineral Behaviour on Blended Coal Ash Fusion Characteristics
,”
Fuel
,
78
(
8
), pp.
963
969
.
3.
Ward
,
C. R.
,
2002
, “
Analysis and Significance of Mineral Matter in Coal Seams
,”
Int. J. Coal Geol.
,
50
(
1
), pp.
135
168
.
4.
Winegartner
,
E. C.
, and
Rhodes
,
B. T.
,
1975
, “
An Empirical Study of the Relation of Chemical Properties to Ash Fusion Temperatures
,”
ASME J. Eng. Gas Turbine Power
,
97
(
3
), pp.
395
403
.
5.
Seggiani
,
M.
, and
Pannocchia
,
G.
,
2003
, “
Prediction of Coal Ash Thermal Properties Using Partial Least-Squares Regression
,”
Ind. Eng. Chem. Res.
,
42
(
20
), pp.
4919
4926
.
6.
Özbayoğlu
,
G.
, and
Evren Özbayoğlu
,
M.
,
2006
, “
A New Approach for the Prediction of Ash Fusion Temperatures: A Case Study Using Turkish Lignites
,”
Fuel
,
85
(
4
), pp.
545
552
.
7.
Song
,
W. J.
,
Tang
,
L. H.
,
Zhu
,
X. D.
,
Wu
,
Y. Q.
,
Zhu
,
Z. B.
, and
Koyama
,
S.
,
2009
, “
Prediction of Chinese Coal Ash Fusion Temperatures in Ar and H2 Atmospheres
,”
Energy Fuel
,
23
(
4
), pp.
1990
1997
.
8.
Zhao
,
B.
,
Zhang
,
Z.
, and
Wu
,
X.
,
2010
, “
Prediction of Coal Ash Fusion Temperature by Least-Squares Support Vector Machine Model
,”
Energy Fuel
,
24
(
5
), pp.
3066
3071
.
9.
Vassilev
,
S. V.
,
Kitano
,
K.
,
Takeda
,
S.
, and
Tsurue
,
T.
,
1995
, “
Influence of Mineral and Chemical Composition of Coal Ashes on Their Fusibility
,”
Fuel Process. Technol.
,
45
(
1
), pp.
27
51
.
10.
Vassilev
,
S. V.
, and
Vassileva
,
C. G.
,
1998
, “
Comparative Chemical and Mineral Characterization of Some Bulgarian Coals
,”
Fuel Process. Technol.
,
55
(
1
), pp.
55
69
.
11.
Vassileva
,
C. G.
, and
Vassilev
,
S. V.
,
2005
, “
Behaviour of Inorganic Matter During Heating of Bulgarian Coals: 1. Lignites
,”
Fuel Process. Technol.
,
86
(
12–13
), pp.
1297
1333
.
12.
Vassileva
,
C. G.
, and
Vassilev
,
S. V.
,
2006
, “
Behaviour of Inorganic Matter During Heating of Bulgarian Coals: 2. Subbituminous and Bituminous Coals
,”
Fuel Process. Technol.
,
87
(
12
), pp.
1095
1116
.
13.
Vassilev
,
S. V.
, and
Vassileva
,
C. G.
,
2009
, “
A New Approach for the Combined Chemical and Mineral Classification of the Inorganic Matter in Coal: 1. Chemical and Mineral Classification Systems
,”
Fuel
,
88
(
2
), pp.
235
245
.
14.
Vassilev
,
S. V.
,
Vassileva
,
C. G.
,
Baxter
,
D.
, and
Andersen
,
L. K.
,
2009
, “
A New Approach for the Combined Chemical and Mineral Classification of the Inorganic Matter in Coal: 2. Potential Applications of the Classification Systems
,”
Fuel
,
88
(
2
), pp.
246
254
.
15.
Vassilev
,
S. V.
,
Vassileva
,
C. G.
,
Baxter
,
D.
, and
Andersen
,
L. K.
,
2010
, “
Relationships Between Chemical and Mineral Composition of Coal and Their Potential Applications as Genetic Indicators: Part 1. Chemical Characteristics
,”
Geol. Balc.
,
39
(
3
), pp.
21
41
.
16.
Vassilev
,
S. V.
,
Vassileva
,
C. G.
,
Baxter
,
D.
, and
Andersen
,
L. K.
,
2010
, “
Relationships Between Chemical and Mineral Composition of Coal and Their Potential Applications as Genetic Indicators. Part 2. Mineral Classes, Groups and Species
,”
Geol. Balc.
,
39
(
3
), pp.
43
67
.
17.
Van Dyk
,
J. C.
,
Melzer
,
S.
, and
Sobiecki
,
A.
,
2006
, “
Mineral Matter Transformation During Sasol–Lurgi Fixed Bed Dry Bottom Gasification—Utilization of HT-XRD and FactSage Modelling
,”
Miner. Eng.
,
19
(
10
), pp.
1126
1135
.
18.
Bai
,
J.
,
Li
,
W.
, and
Li
,
B.
,
2008
, “
Characterization of Low-Temperature Coal Ash Behaviors at High Temperatures Under Reducing Atmosphere
,”
Fuel
,
87
(
4–5
), pp.
583
591
.
19.
Fallavena
,
V. L. V.
,
de Abreu
,
C. S.
,
Inácio
,
T. D.
,
Azevedo
,
C. M. N.
,
Pires
,
M.
,
Ferret
,
L. S.
,
Fernandes
,
I. D.
, and
Tarazona
,
R. M.
,
2014
, “
Determination of Mineral Matter in Brazilian Coals by Thermal Treatments
,”
Fuel Process. Technol.
,
125
(
9
), pp.
41
50
.
20.
Chakravarty
,
S.
,
Mohanty
,
A.
,
Banerjee
,
A.
,
Tripathy
,
R.
,
Mandal
,
G. K.
,
Basariya
,
M. R.
, and
Sharma
,
M.
,
2015
, “
Composition, Mineral Matter Characteristics and Ash Fusion Behavior of Some Indian Coals
,”
Fuel
,
150
(
3
), pp.
96
101
.
21.
Wen
,
C.
,
Xu
,
M.
,
Zhou
,
K.
,
Yu
,
D.
,
Zhan
,
Z.
, and
Mo
,
X.
,
2015
, “
The Melting Potential of Various Ash Components Generated From Coal Combustion: Indicated by the Circularity of Individual Particles Using CCSEM Technology
,”
Fuel Process. Technol.
,
133
, pp.
128
136
.
22.
Reinmöller
,
M.
,
Klinger
,
M.
,
Schreiner
,
M.
, and
Gutte
,
H.
,
2015
, “
Relationship Between Ash Fusion Temperatures of Ashes From Hard Coal, Brown Coal, and Biomass and Mineral Phases Under Different Atmospheres: A Combined FactSage™ Computational and Network Theoretical Approach
,”
Fuel
,
151
, pp.
118
123
.
23.
Vassilev
,
S. V.
, and
Tascón
,
J. M. D.
,
2003
, “
Methods for Characterization of Inorganic and Mineral Matter in Coal: A Critical Overview
,”
Energy Fuel
,
17
(
2
), pp.
271
281
.
24.
Gupta
,
R.
,
2007
, “
Advanced Coal Characterization: A Review
,”
Energy Fuel
,
21
(
2
), pp.
451
460
.
25.
Bernasconi
,
A.
,
Dapiaggi
,
M.
, and
Gualtieri
,
A. F.
,
2014
, “
Accuracy in Quantitative Phase Analysis of Mixtures With Large Amorphous Contents. The Case of Zircon-Rich Sanitary-Ware Glazes
,”
J. Appl. Crystallogr.
,
47
(
1
), pp.
136
145
.
26.
Gualtieri
,
A. F.
,
Riva
,
V.
,
Bresciani
,
A.
,
Maretti
,
S.
,
Tamburini
,
M.
, and
Viani
,
A.
,
2014
, “
Accuracy in Quantitative Phase Analysis of Mixtures With Large Amorphous Contents. The Case of Stoneware Ceramics and Bricks
,”
J. Appl. Crystallogr.
,
47
(
3
), pp.
835
846
.
27.
Ward
,
C.
, and
French
,
D.
,
2006
, “
Determination of Glass Content and Estimation of Glass Composition in Fly Ash Using Quantitative X-Ray Diffractometry
,”
Fuel
,
85
(
16
), pp.
2268
2277
.
28.
Ibáñez
,
J.
,
Font
,
O.
,
Moreno
,
N.
,
Elvira
,
J. J.
,
Alvarez
,
S.
, and
Querol
,
X.
,
2013
, “
Quantitative Rietveld Analysis of the Crystalline and Amorphous Phases in Coal Fly Ashes
,”
Fuel
,
105
(
2
), pp.
314
317
.
29.
Wang
,
Y.
,
Wen
,
J.
,
Guo
,
L.
, and
Zhang
,
J.
,
2012
, “
Influence of Oxygen-Containing Functional Groups on Carbon Monoxide Occurs in Low Rank Coals
,”
Proc. Eng.
,
45
(
2
), pp.
967
972
.
30.
Zhang
,
J.
,
Han
,
C.
,
Yan
,
Z.
,
Liu
,
K.
,
Xu
,
Y.
,
Sheng
,
C.
, and
Pan
,
W.
,
2001
, “
The Varying Characterization of Alkali Metals (Na, K) From Coal During the Initial Stage of Coal Combustion
,”
Energy Fuel
,
15
(
4
), pp.
786
793
.
31.
Silva
,
L. F. O.
,
Izquierdo
,
M.
,
Querol
,
X.
,
Finkelman
,
R. B.
,
Oliveira
,
M. L. S.
,
Wollenschlager
,
M.
,
Towler
,
M.
,
Pérez-López
,
R.
, and
Macias
,
F.
,
2011
, “
Leaching of Potential Hazardous Elements of Coal Cleaning Rejects
,”
Environ. Monit. Assess.
,
175
(
1–4
), pp.
109
126
.
32.
Kechang
,
X.
,
2002
,
Coal Structure and Its Reactivity
,
Science Press
,
Beijing, China
.
33.
Kopyscinski
,
J.
,
Habibi
,
R.
,
Mims
,
C. A.
, and
Hill
,
J. M.
,
2013
, “
K2CO3-Catalyzed CO2 Gasification of Ash-Free Coal: Kinetic Study
,”
Energy Fuel
,
27
(
8
), pp.
4875
4883
.
34.
Benson
,
S. A.
, and
Holm
,
P. L.
,
1985
, “
Comparison of Inorganics in Three Low-Rank Coals
,”
Ind. Eng. Chem. Prod. Res. Dev.
,
24
(
1
), pp.
145
149
.
You do not currently have access to this content.