Waste heat driven ammonia/water Kalina cycles have shown promise for improving the efficiency of electricity production from low-temperature reservoirs (T < 150 °C). However, there has been limited application of these systems to utilize widely available, disperse, waste heat streams for smaller scale power production (1–10 kWe). Factors limiting increased deployment of these systems include large, costly heat exchangers, and concerns over safety of the working fluid. The use of mini- and microchannel (D < 1 mm) heat exchangers has the potential to decrease system size and material cost, while also reducing the working fluid inventory, enabling penetration of Kalina cycles into these new markets. However, accurate methods of predicting the heat and mass transfer in microscale geometries must be available for designing and optimizing these compact heat exchangers. In the present study, the effect of different heat and mass transfer models on the calculated Kalina cycle condenser size is investigated at representative system conditions. A detailed heat exchanger model for a liquid-coupled microchannel ammonia/water condenser is developed. The heat exchanger is sized using different predictive methods to provide the required heat transfer area for a 1 kWe Kalina system with a source and sink temperature of 150 °C and 20 °C, respectively. The results show that for the models considered, predicted heat exchanger size can vary by up to 58%. Based on prior experimental results, a nonequilibrium approach is recommended to provide the most accurate, economically sized ammonia/water condenser.

References

References
1.
Rattner
,
A. S.
, and
Garimella
,
S.
,
2011
, “
Energy Harvesting, Reuse and Upgrade to Reduce Primary Energy Usage in the USA
,”
Energy
,
36
(
10
), pp.
6172
6183
.
2.
BCS Incorporated
,
2008
, “
Waste Heat Recovery: Technology and Opportunities in U.S. Industry
,”
U.S. Department of Energy Industrial Technologies
Program, Washington, DC.
3.
Kalina
,
A. I.
,
1984
, “
Combined-Cycle System With Novel Bottoming Cycle
,”
ASME J. Eng. Gas Turbines Power
,
106
(
4
), pp.
737
742
.
4.
Elsayed
,
A.
,
Embaye
,
M.
,
AL-Dadah
,
R.
,
Mahmoud
,
S.
, and
Rezk
,
A.
,
2013
, “
Thermodynamic Performance of Kalina Cycle System 11 (KCS11): Feasibility of Using Alternative Zeotropic Mixtures
,”
Int. J. Low-Carbon Technol.
,
8
(
Suppl. 1
), pp.
i69
i78
.
5.
Zhang
,
X.
,
He
,
M.
, and
Zhang
,
Y.
,
2012
, “
A Review of Research on the Kalina Cycle
,”
Renewable Sustainable Energy Rev.
,
16
(
7
), pp.
5309
5318
.
6.
Henry
,
A. M.
,
2002
, “
Kalina Cycle Concepts for Low Temperature Geothermal
,”
Geotherm. Resour. Counc., Trans.
,
26
, pp.
707
713
.
7.
Bombarda
,
P.
,
Invernizzi
,
C. M.
, and
Pietra
,
C.
,
2010
, “
Heat Recovery From Diesel Engines: A Thermodynamic Comparison Between Kalina and ORC Cycles
,”
Appl. Therm. Eng.
,
30
(
2–3
), pp.
212
219
.
8.
DiPippo
,
R.
,
2004
, “
Second Law Assessment of Binary Plants Generating Power From Low-Temperature Geothermal Fluids
,”
Geothermics
,
33
(
5
), pp.
565
586
.
9.
Walraven
,
D.
,
Laenen
,
B.
, and
D'Haeseleer
,
W.
,
2013
, “
Comparison of Thermodynamic Cycles for Power Production From Low-Temperature Geothermal Heat Sources
,”
Energy Convers. Manage.
,
66
, pp.
220
233
.
10.
Singh
,
O. K.
, and
Kaushik
,
S. C.
,
2013
, “
Energy and Exergy Analysis and Optimization of Kalina Cycle Coupled With a Coal Fired Steam Power Plant
,”
Appl. Therm. Eng.
,
51
(
1–2
), pp.
787
800
.
11.
Nguyen
,
T.-V.
,
Knudsen
,
T.
,
Larsen
,
U.
, and
Haglind
,
F.
,
2014
, “
Thermodynamic Evaluation of the Kalina Split-Cycle Concepts for Waste Heat Recovery Applications
,”
Energy
,
71
, pp.
277
288
.
12.
Ganesh
,
N. S.
, and
Srinivas
,
T.
,
2012
, “
Design and Modeling of Low Temperature Solar Thermal Power Station
,”
Appl. Energy
,
91
(
1
), pp.
180
186
.
13.
Sun
,
F.
,
Zhou
,
W.
,
Ikegami
,
Y.
,
Nakagami
,
K.
, and
Su
,
X.
,
2014
, “
Energy-Exergy Analysis and Optimization of the Solar-Boosted Kalina Cycle System 11 (KCS-11)
,”
Renewable Energy
,
66
, pp.
268
279
.
14.
Srinivas
,
T.
, and
Reddy
,
B. V.
,
2014
, “
Thermal Optimization of a Solar Thermal Cooling Cogeneration Plant at Low Temperature Heat Recovery
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
021204
.
15.
Hettiarachchi
,
H. D. M.
,
Golubovic
,
M.
,
Worek
,
W. M.
, and
Ikegami
,
Y.
,
2007
, “
The Performance of the Kalina Cycle System 11(KCS-11) With Low-Temperature Heat Sources
,”
ASME J. Energy Resour. Technol.
,
129
(
3
), pp.
243
247
.
16.
Arslan
,
O.
,
2011
, “
Power Generation From Medium Temperature Geothermal Resources: ANN-Based Optimization of Kalina Cycle System-34
,”
Energy
,
36
(
5
), pp.
2528
2534
.
17.
Rodríguez
,
C. E. C.
,
Palacio
,
J. C. E.
,
Venturini
,
O. J.
,
Lora
,
E. E. S.
,
Cobas
,
V. M.
,
dos Santos
,
D. M.
,
Dotto
,
F. R. L.
, and
Gialluca
,
V.
,
2013
, “
Exergetic and Economic Comparison of ORC and Kalina Cycle for Low Temperature Enhanced Geothermal System in Brazil
,”
Appl. Therm. Eng.
,
52
(
1
), pp.
109
119
.
18.
Nag
,
P. K.
, and
Gupta
,
A. V. S. S. K. S.
,
1998
, “
Exergy Analysis of the Kalina Cycle
,”
Appl. Therm. Eng.
,
18
(
6
), pp.
427
439
.
19.
Kim
,
K. H.
,
Ko
,
H. J.
, and
Kim
,
K.
,
2014
, “
Assessment of Pinch Point Characteristics in Heat Exchangers and Condensers of Ammonia-Water Based Power Cycles
,”
Appl. Energy
,
113
, pp.
970
981
.
20.
Determan
,
M. D.
, and
Garimella
,
S.
,
2012
, “
Design, Fabrication, and Experimental Demonstration of a Microscale Monolithic Modular Absorption Heat Pump
,”
Appl. Therm. Eng.
,
47
, pp.
119
125
.
21.
Delahanty
,
J. C.
,
Garimella
,
S.
, and
Garrabrant
,
M. A.
,
2015
, “
Design of Compact Microscale Geometries for Ammonia–Water Desorption
,”
Sci. Technol. Built Environ.
,
21
(
3
), pp.
365
374
.
22.
Keinath
,
C. M.
,
Hoysall
,
D.
,
Delahanty
,
J. C.
,
Determan
,
M. D.
, and
Garimella
,
S.
,
2015
, “
Experimental Assessment of a Compact Branched Tray Generator for Ammonia–Water Desorption
,”
Sci. Technol. Built Environ.
,
21
(
3
), pp.
348
356
.
23.
Fronk
,
B. M.
, and
Garimella
,
S.
,
2013
, “
In-Tube Condensation of Zeotropic Fluid Mixtures: A Review
,”
Int. J. Refrig.
,
36
(
2
), pp.
534
561
.
24.
Fronk
,
B. M.
, and
Garimella
,
S.
,
2016
, “
Condensation of Ammonia and High-Temperature-Glide Ammonia/Water Zeotropic Mixtures in Minichannels—Part I: Measurements
,”
Int. J. Heat Mass Transfer
,
101
, pp.
1343
1356
.
25.
Garimella
,
S.
, and
Fronk
,
B. M.
,
2016
,
Encyclopedia of Two-Phase Heat Transfer and Flow I: Fundamentals and Methods Volume 2: Condensation Heat Transfer
,
World Scientific Publishing
,
Singapore
.
26.
Colburn
,
A. P.
, and
Drew
,
T. B.
,
1937
, “
The Condensation of Mixed Vapors
,”
Trans. Am. Inst. Chem. Eng.
,
33
, pp.
197
215
.
27.
Price
,
B.
, and
Bell
,
K.
,
1973
, “
Design of Binary Vapor Condensers Using the Colburn–Drew Equations
,”
AIChE Symp. Ser.
,
70
(
138
), pp.
163
171
.
28.
Jin
,
D. X.
,
Kwon
,
J. T.
, and
Kim
,
M. H.
,
2003
, “
Prediction of In-Tube Condensation Heat Transfer Characteristics of Binary Refrigerant Mixtures
,”
Int. J. Refrig.
,
26
(
5
), pp.
593
600
.
29.
Fronk
,
B. M.
, and
Garimella
,
S.
,
2014
, “
Improved Non-Equilibrium Film Method for the Design of High-Temperature-Glide, Mini- and Microchannel Condensers
,”
ASME
Paper No. IMECE2014-38543.
30.
Cavallini
,
A.
,
Censi
,
G.
,
Del Col
,
D.
,
Doretti
,
L.
,
Longo
,
G. A.
, and
Rossetto
,
L.
,
2002
, “
A Tube-in-Tube Water/Zeotropic Mixture Condenser: Design Procedure Against Experimental Data
,”
Exp. Therm. Fluid Sci.
,
25
(
7
), pp.
495
501
.
31.
Silver
,
R. S.
,
1963
, “
An Approach to a General Theory of Surface Condensers
,”
Proc. Inst. Mech. Eng.
,
178
(
14
), pp.
339
376
.
32.
Bell
,
K. J.
, and
Ghaly
,
M. A.
,
1973
, “
An Approximate Generalized Design Method for Multicomponent/Partial Condenser
,”
AIChE Symp. Ser.
,
69
(
131
), pp.
72
79
.
33.
Del Col
,
D.
,
Cavallini
,
A.
, and
Thome
,
J. R.
,
2005
, “
Condensation of Zeotropic Mixtures in Horizontal Tubes: New Simplified Heat Transfer Model Based on Flow Regimes
,”
ASME J. Heat Transfer
,
127
(
3
), pp.
221
230
.
34.
Deng
,
H.
,
Fernandino
,
M.
, and
Dorao
,
C. A.
,
2014
, “
Numerical Study of Heat and Mass Transfer of Binary Mixtures Condensation in Mini-Channels
,”
Int. Commun. Heat Mass Transfer
,
58
, pp.
45
53
.
35.
Deng
,
H.
,
Fernandino
,
M.
, and
Dorao
,
C. A.
,
2015
, “
Numerical Study of the Condensation Length of Binary Zeotropic Mixtures
,”
Energy Procedia
,
64
(
1876
), pp.
43
52
.
36.
Lemmon
,
E. W.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2010
, “
REFPROP Reference Fluid Thermodynamic and Transport Properties—NIST Standard Reference Database 23, Version 9.0
,”
NIST
,
Boulder, CO
.
37.
Klein
,
S. A.
,
2014
, “
Engineering Equation Solver
,”
F-Chart Software
,
Madison, WI
.
38.
Churchill
,
S.
,
1977
, “
Friction-Factor Equation Spans All Fluid-Flow Regimes
,”
Chem. Eng.
,
84
(
24
), pp.
91
92
.
39.
Fronk
,
B. M.
, and
Garimella
,
S.
,
2016
, “
Condensation of Ammonia and High-Temperature-Glide Zeotropic Ammonia/Water Mixtures in Minichannels—Part II: Heat Transfer Models
,”
Int. J. Heat Mass Transfer
,
101
, pp.
1357
1373
.
40.
Ackermann
,
G.
,
1937
, “
Heat Transfer and Molecular Mass Transfer in the Same Field at High Temperatures and Large Partial Pressure Differences
,”
VDI-Forschungsh.
,
8
(
382
), pp.
1
10
.
41.
Chilton
,
T. H.
, and
Colburn
,
A. P.
,
1934
, “
Mass Transfer (Absorption) Coefficients Prediction From Data on Heat Transfer and Fluid Friction
,”
Ind. Eng. Chem.
,
26
(
11
), pp.
1183
1187
.
42.
Dobson
,
M. K.
, and
Chato
,
J. C.
,
1998
, “
Condensation in Smooth Horizontal Tubes
,”
ASME J. Heat Transfer
,
120
(
1
), pp.
193
213
.
43.
Cavallini
,
A.
,
Col
,
D. D.
,
Doretti
,
L.
,
Matkovic
,
M.
,
Rossetto
,
L.
,
Zilio
,
C.
, and
Censi
,
G.
,
2006
, “
Condensation in Horizontal Smooth Tubes: A New Heat Transfer Model for Heat Exchanger Design
,”
Heat Transfer Eng.
,
27
(
8
), pp.
31
38
.
44.
Shah
,
M. M.
,
1979
, “
A General Correlation for Heat Transfer During Film Condensation Inside Pipes
,”
Int. J. Heat Mass Transfer
,
22
(
4
), pp.
547
556
.
45.
Kim
,
S. M.
, and
Mudawar
,
I.
,
2013
, “
Universal Approach to Predicting Heat Transfer Coefficient for Condensing Mini/Micro-Channel Flow
,”
Int. J. Heat Mass Transfer
,
56
(
1–2
), pp.
238
250
.
46.
Keinath
,
B. L.
,
2012
, “
Void Fraction, Pressure Drop and Heat Transfer in High Pressure Condensing Flows Through Microchannels
,”
Ph.D. thesis
, Georgia Institute of Technology, Atlanta, GA.
47.
Keinath
,
B. L.
, and
Garimella
,
S.
,
2016
, “
Measurement and Modeling of Void Fraction in High Pressure Condensing Flows Through Microchannels
,”
Heat Transfer Eng.
,
37
(
13–14
), pp.
1172
1180
.
48.
Heymann
,
D.
,
Pence
,
D.
, and
Narayanan
,
V.
,
2010
, “
Optimization of Fractal-Like Branching Microchannel Heat Sinks for Single-Phase Flows
,”
Int. J. Therm. Sci.
,
49
(
8
), pp.
1383
1393
.
49.
Kwak
,
Y.
,
Pence
,
D.
,
Liburdy
,
J.
, and
Narayanan
,
V.
,
2009
, “
Gas–Liquid Flows in a Microscale Fractal-Like Branching Flow Network
,”
Int. J. Heat Fluid Flow
,
30
(
5
), pp.
868
876
.
50.
Kim
,
S. M.
, and
Mudawar
,
I.
,
2012
, “
Universal Approach to Predicting Two-Phase Frictional Pressure Drop for Adiabatic and Condensing Mini/Micro-Channel Flows
,”
Int. J. Heat Mass Transfer
,
55
(
11–12
), pp.
3246
3261
.
You do not currently have access to this content.