A relatively new field, nanotechnology has seen an expansion onto almost every scientific sector since its origin in the 1980s. This work focuses on the potential of nanotechnology in batteries, in particular, with a review of the current and past developments in the field. For smaller applications using lithium-ion batteries (LIBs), it appears that nanotechnology has established a firm foothold. The possibilities for mainstreaming this advance in large batteries, e.g., grid batteries are researched, and developments to date are reported. Viable grid batteries are the key to adapting wind, water, and solar (WWS) sources of energy for the power grid since none of these WWS resources are available every single hour of the day and night.

References

References
1.
Tarascon
,
J. M.
, and
Armand
,
M.
,
2001
, “
Issues and Challenges Facing Rechargeable Lithium Batteries
,”
Nature
,
414
(
6861
), pp.
359
367
.
2.
Ji
,
L.
,
Lin
,
Z.
,
Alcoutlabi
,
M.
, and
Zhang
,
X.
,
2011
, “
Recent Developments in Nanostructured Anode Materials for Rechargeable Lithium-Ion Batteries
,”
Energy Environ. Sci.
,
4
(
8
), pp.
2682
2699
.
3.
Manthiram
,
A.
,
2011
, “
Materials Challenges and Opportunities of Lithium Ion Batteries
,”
J. Phys. Chem. Lett.
,
2
(
3
), pp.
176
184
.
4.
Bruce
,
P. G.
,
Scrosati
,
B.
, and
Tarascon
,
J. M.
,
2008
, “
Nanomaterials for Rechargeable Lithium Batteries
,”
Angew. Chem. Int. Ed.
,
47
(
16
), pp.
2930
2946
.
5.
Stura
,
E.
, and
Nicolini
,
C.
,
2004
, “
New Nanomaterials for Light Weight Lithium Batteries
,”
Anal. Chim. Acta
,
568
(
1–2
), pp.
57
64
.
6.
Panero
,
S.
,
Scrosati
,
B.
,
Wachtler
,
M.
, and
Croce
,
F.
,
2004
, “
Nanotechnology for the Progress of Lithium Batteries R&D
,”
J. Power Sources
,
129
(
1
), pp.
90
95
.
7.
Jeong
,
G.
,
Kim
,
H.
,
Park
,
J. H.
,
Jeon
,
J.
,
Jin
,
X.
,
Song
,
J.
,
Kim
,
B. R.
,
Park
,
M. S.
,
Kim
,
J. M.
, and
Kim
,
Y. J.
,
2015
, “
Nanotechnology Enabled Rechargeable Li–SO2 Batteries: Another Approach Towards Post-Lithium-Ion Battery Systems
,”
Energy Environ. Sci.
,
8
(
11
), pp.
3173
3180
.
8.
Vartanian
,
C.
, and
Bentley
,
N.
,
2011
, “
A123 Systems' Advanced Battery Energy Storage for Renewable Integration
,”
InPower Systems Conference and Exposition
(
PSCE
), IEEE/PES 2011, Mar. 20–24.
9.
Krupenkin
,
T. N.
,
Taylor
,
J. A.
,
Schneider
,
T. M.
, and
Yang
,
S.
,
2004
, “
From Rolling Ball to Complete Wetting: The Dynamic Tuning of Liquids on Nanostructured Surfaces
,”
Langmuir
,
20
(
10
), pp.
3824
3827
.
10.
He3da
,
S. R. O.
,
2015
, “
Lithium Accumulator
,”
U.S. Patent No. US9203123 B2
.
11.
Fu
,
K.
,
Yildiz
,
O.
,
Bhanushali
,
H.
,
Wang
,
Y.
,
Stano
,
K.
,
Xue
,
L.
,
Zhang
,
X.
, and
Bradford
,
P. D.
,
2013
, “
Aligned Carbon Nanotube‐Silicon Sheets: A Novel Nano‐Architecture for Flexible Lithium Ion Battery Electrodes
,”
Adv. Mater.
,
25
(
36
), pp.
5109
5114
.
12.
Lee
,
S. W.
,
Yabuuchi
,
N.
,
Gallant
,
B. M.
,
Chen
,
S.
,
Kim
,
B. S.
,
Hammond
,
P. T.
, and
Shao-Horn
,
Y.
,
2010
, “
High-Power Lithium Batteries From Functionalized Carbon-Nanotube Electrodes
,”
Nat. Nanotechnol.
,
5
(
7
), pp.
531
537
.
13.
Reddy
,
A. L.
,
Shaijumon
,
M. M.
,
Gowda
,
S. R.
, and
Ajayan
,
P. M.
,
2009
, “
Coaxial MnO2/Carbon Nanotube Array Electrodes for High-Performance Lithium Batteries
,”
Nano Lett.
,
9
(
3
), pp.
1002
1006
.
14.
Wu
,
H.
, and
Cui
,
Y.
,
2012
, “
Designing Nanostructured Si Anodes for High Energy Lithium Ion Batteries
,”
Nano Today
,
7
(
5
), pp.
414
429
.
15.
Ko
,
M.
,
Chae
,
S.
,
Ma
,
J.
,
Kim
,
N.
,
Lee
,
H. W.
,
Cui
,
Y.
, and
Cho
,
J.
,
2016
, “
Scalable Synthesis of Silicon-Nanolayer-Embedded Graphite for High-Energy Lithium-Ion Batteries
,”
Nat. Energy
,
1
(
9
), p.
16113
.
16.
Liu
,
N.
,
Lu
,
Z.
,
Zhao
,
J.
,
McDowell
,
M. T.
,
Lee
,
H. W.
,
Zhao
,
W.
, and
Cui
,
Y.
,
2014
, “
A Pomegranate-Inspired Nanoscale Design for Large-Volume-Change Lithium Battery Anodes
,”
Nat. Nanotechnol.
,
9
(
3
), pp.
187
192
.
17.
Ge
,
M.
,
Rong
,
J.
,
Fang
,
X.
,
Zhang
,
A.
,
Lu
,
Y.
, and
Zhou
,
C.
,
2013
, “
Scalable Preparation of Porous Silicon Nanoparticles and Their Application for Lithium-Ion Battery Anodes
,”
Nano Res.
,
6
(
3
), pp.
174
181
.
18.
Schuster
,
J.
,
He
,
G.
,
Mandlmeier
,
B.
,
Yim
,
T.
,
Lee
,
K. T.
,
Bein
,
T.
, and
Nazar
,
L. F.
,
2012
, “
Spherical Ordered Mesoporous Carbon Nanoparticles With High Porosity for Lithium–Sulfur Batteries
,”
Angew. Chem.
,
124
(
15
), pp.
3651
3655
.
19.
Wessells
,
C. D.
,
Huggins
,
R. A.
, and
Cui
,
Y.
,
2011
, “
Copper Hexacyanoferrate Battery Electrodes With Long Cycle Life and High Power
,”
Nat. Commun.
,
21
, p.
550
.
20.
Le Thai
,
M.
,
Chandran
,
G. T.
,
Dutta
,
R. K.
,
Li
,
X.
, and
Penner
,
R. M.
,
2016
, “
100k Cycles and Beyond: Extraordinary Cycle Stability for MnO2 Nanowires Imparted by a Gel Electrolyte
,”
ACS Energy Lett.
,
1
(1), pp.
57
63
.
21.
Chan
,
C. K.
,
Peng
,
H.
,
Liu
,
G.
,
McIlwrath
,
K.
,
Zhang
,
X. F.
,
Huggins
,
R. A.
, and
Cui
,
Y.
,
2008
, “
High-Performance Lithium Battery Anodes Using Silicon Nanowires
,”
Nat. Nanotechnol.
,
3
(
1
), pp.
31
35
.
22.
Zheng
,
G.
,
Yang
,
Y.
,
Cha
,
J. J.
,
Hong
,
S. S.
, and
Cui
,
Y.
,
2011
, “
Hollow Carbon Nanofiber-Encapsulated Sulfur Cathodes for High Specific Capacity Rechargeable Lithium Batteries
,”
Nano Lett.
,
11
(
10
), pp.
4462
4467
.
23.
Mukherjee
,
R.
,
Thomas
,
A. V.
,
Krishnamurthy
,
A.
, and
Koratkar
,
N.
,
2012
, “
Photothermally Reduced Graphene as High-Power Anodes for Lithium-Ion Batteries
,”
Acs Nano
,
6
(
9
), pp.
7867
7878
.
24.
Wessells
,
C. D.
,
Peddada
,
S. V.
,
Huggins
,
R. A.
, and
Cui
,
Y.
, “
Nickel Hexacyanoferrate Nanoparticle Electrodes for Aqueous Sodium and Potassium Ion Batteries
,”
Nano Lett.
,
11
(
12
), pp.
5421
5425
.
25.
Goriparti
,
S.
,
Miele
,
E.
,
De Angelis
,
F.
,
Di Fabrizio
,
E.
,
Zaccaria
,
R. P.
, and
Capiglia
,
C.
,
2014
, “
Review on Recent Progress of Nanostructured Anode Materials for Li-Ion Batteries
,”
J. Power Sources
,
257
(1), pp.
421
443
.
26.
Ortiz
,
G. F.
,
López
,
M. C.
,
Li
,
Y.
,
McDonald
,
M. J.
,
Cabello
,
M.
,
Tirado
,
J. L.
, and
Yang
,
Y.
,
2016
, “
Enhancing the Energy Density of Safer Li-Ion Batteries by Combining High-Voltage Lithium Cobalt Fluorophosphate Cathodes and Nanostructured Titania Anodes
,”
Sci. Rep.
,
61
, p.
20656
.
27.
Carnegie Mellon University
,
2016
, “
Self-Contained, Alloy Type, Thin Film Anodes for Lithium-Ion Batteries
,” World Patent No. WO/2005/076389.
28.
Wang
,
Y.
,
Li
,
H.
,
He
,
P.
,
Hosono
,
E.
, and
Zhou
,
H.
,
2010
, “
Nano Active Materials for Lithium-Ion Batteries
,”
Nanoscale
,
2
(
8
), pp.
1294
1305
.
29.
Wu
,
H. B.
,
Zhang
,
G.
,
Yu
,
L.
, and
Lou
,
X. W.
,
2016
, “
One-Dimensional Metal Oxide–Carbon Hybrid Nanostructures for Electrochemical Energy Storage
,”
Nanoscale Horizons
,
1
(
1
), pp.
27
40
.
30.
Dunn
,
B.
,
Kamath
,
H.
, and
Tarascon
,
J. M.
,
2011
, “
Electrical Energy Storage for the Grid: A Battery of Choices
,”
Science
,
334
(
6058
), pp.
928
935
.
31.
Marcacci, S.,
2012
, “
New Nanotech Battery Energy Storage System Debuts in Kansas City
,”
CleanTechnica
, Mar. 18, epub.
32.
Arico
,
A. S.
,
Bruce
,
P.
,
Scrosati
,
B.
,
Tarascon
,
J. M.
, and
Van Schalkwijk
,
W.
,
2005
, “
Nanostructured Materials for Advanced Energy Conversion and Storage Devices
,”
Nat. Mater.
,
4
(
5
), pp.
366
377
.
33.
Wong
,
K. V.
(Expert View),
2014
, “
Recommendations for Energy Water Nexus Problems
,”
ASME J. Energy Resour. Technol.
,
136
(
3
), p.
034701
.
34.
Wong
,
K. V.
, and
Pecora
,
C.
,
2014
, “
Recommendations for Energy-Water-Food Nexus Problems
,”
ASME J. Energy Resour. Technol.
,
137
(
3
), p.
034701
.
35.
Wong
,
K. V.
(Expert View), “
Energy-Water-Food Nexus and Recommendations for Security
,”
ASME J. Energy Resour. Technol.
,
137
(
3
), p.
032002
.
36.
Wong
,
K. V.
, “
The Second Law of Thermodynamics and Heat Release to the Global Environment by Human Activities
,”
ASME
Paper No. IMECE2010-38201.
37.
Wong
,
K. V.
,
Dai
,
Y.
, and
Paul
,
B.
, “
Anthropogenic Heat Release Into the Environment
,”
ASME J. Energy Resour. Technol.
,
134
(
4
), p.
041602
.
38.
Wong
,
K. V.
,
2016
,
Climate Change
,
Momentum Press
,
New York
.
You do not currently have access to this content.