A relatively new field, nanotechnology has seen an expansion onto almost every scientific sector since its origin in the 1980s. This work focuses on the potential of nanotechnology in batteries, in particular, with a review of the current and past developments in the field. For smaller applications using lithium-ion batteries (LIBs), it appears that nanotechnology has established a firm foothold. The possibilities for mainstreaming this advance in large batteries, e.g., grid batteries are researched, and developments to date are reported. Viable grid batteries are the key to adapting wind, water, and solar (WWS) sources of energy for the power grid since none of these WWS resources are available every single hour of the day and night.
Issue Section:
Technology Review
Keywords:
Energy storage systems
References
1.
Tarascon
, J. M.
, and Armand
, M.
, 2001
, “Issues and Challenges Facing Rechargeable Lithium Batteries
,” Nature
, 414
(6861
), pp. 359
–367
.2.
Ji
, L.
, Lin
, Z.
, Alcoutlabi
, M.
, and Zhang
, X.
, 2011
, “Recent Developments in Nanostructured Anode Materials for Rechargeable Lithium-Ion Batteries
,” Energy Environ. Sci.
, 4
(8
), pp. 2682
–2699
.3.
Manthiram
, A.
, 2011
, “Materials Challenges and Opportunities of Lithium Ion Batteries
,” J. Phys. Chem. Lett.
, 2
(3
), pp. 176
–184
.4.
Bruce
, P. G.
, Scrosati
, B.
, and Tarascon
, J. M.
, 2008
, “Nanomaterials for Rechargeable Lithium Batteries
,” Angew. Chem. Int. Ed.
, 47
(16
), pp. 2930
–2946
.5.
Stura
, E.
, and Nicolini
, C.
, 2004
, “New Nanomaterials for Light Weight Lithium Batteries
,” Anal. Chim. Acta
, 568
(1–2
), pp. 57
–64
.6.
Panero
, S.
, Scrosati
, B.
, Wachtler
, M.
, and Croce
, F.
, 2004
, “Nanotechnology for the Progress of Lithium Batteries R&D
,” J. Power Sources
, 129
(1
), pp. 90
–95
.7.
Jeong
, G.
, Kim
, H.
, Park
, J. H.
, Jeon
, J.
, Jin
, X.
, Song
, J.
, Kim
, B. R.
, Park
, M. S.
, Kim
, J. M.
, and Kim
, Y. J.
, 2015
, “Nanotechnology Enabled Rechargeable Li–SO2 Batteries: Another Approach Towards Post-Lithium-Ion Battery Systems
,” Energy Environ. Sci.
, 8
(11
), pp. 3173
–3180
.8.
Vartanian
, C.
, and Bentley
, N.
, 2011
, “A123 Systems' Advanced Battery Energy Storage for Renewable Integration
,” InPower Systems Conference and Exposition
(PSCE
), IEEE/PES 2011, Mar. 20–24.9.
Krupenkin
, T. N.
, Taylor
, J. A.
, Schneider
, T. M.
, and Yang
, S.
, 2004
, “From Rolling Ball to Complete Wetting: The Dynamic Tuning of Liquids on Nanostructured Surfaces
,” Langmuir
, 20
(10
), pp. 3824
–3827
.10.
He3da
, S. R. O.
, 2015
, “Lithium Accumulator
,” U.S. Patent No. US9203123 B2
.11.
Fu
, K.
, Yildiz
, O.
, Bhanushali
, H.
, Wang
, Y.
, Stano
, K.
, Xue
, L.
, Zhang
, X.
, and Bradford
, P. D.
, 2013
, “Aligned Carbon Nanotube‐Silicon Sheets: A Novel Nano‐Architecture for Flexible Lithium Ion Battery Electrodes
,” Adv. Mater.
, 25
(36
), pp. 5109
–5114
.12.
Lee
, S. W.
, Yabuuchi
, N.
, Gallant
, B. M.
, Chen
, S.
, Kim
, B. S.
, Hammond
, P. T.
, and Shao-Horn
, Y.
, 2010
, “High-Power Lithium Batteries From Functionalized Carbon-Nanotube Electrodes
,” Nat. Nanotechnol.
, 5
(7
), pp. 531
–537
.13.
Reddy
, A. L.
, Shaijumon
, M. M.
, Gowda
, S. R.
, and Ajayan
, P. M.
, 2009
, “Coaxial MnO2/Carbon Nanotube Array Electrodes for High-Performance Lithium Batteries
,” Nano Lett.
, 9
(3
), pp. 1002
–1006
.14.
Wu
, H.
, and Cui
, Y.
, 2012
, “Designing Nanostructured Si Anodes for High Energy Lithium Ion Batteries
,” Nano Today
, 7
(5
), pp. 414
–429
.15.
Ko
, M.
, Chae
, S.
, Ma
, J.
, Kim
, N.
, Lee
, H. W.
, Cui
, Y.
, and Cho
, J.
, 2016
, “Scalable Synthesis of Silicon-Nanolayer-Embedded Graphite for High-Energy Lithium-Ion Batteries
,” Nat. Energy
, 1
(9
), p. 16113
.16.
Liu
, N.
, Lu
, Z.
, Zhao
, J.
, McDowell
, M. T.
, Lee
, H. W.
, Zhao
, W.
, and Cui
, Y.
, 2014
, “A Pomegranate-Inspired Nanoscale Design for Large-Volume-Change Lithium Battery Anodes
,” Nat. Nanotechnol.
, 9
(3
), pp. 187
–192
.17.
Ge
, M.
, Rong
, J.
, Fang
, X.
, Zhang
, A.
, Lu
, Y.
, and Zhou
, C.
, 2013
, “Scalable Preparation of Porous Silicon Nanoparticles and Their Application for Lithium-Ion Battery Anodes
,” Nano Res.
, 6
(3
), pp. 174
–181
.18.
Schuster
, J.
, He
, G.
, Mandlmeier
, B.
, Yim
, T.
, Lee
, K. T.
, Bein
, T.
, and Nazar
, L. F.
, 2012
, “Spherical Ordered Mesoporous Carbon Nanoparticles With High Porosity for Lithium–Sulfur Batteries
,” Angew. Chem.
, 124
(15
), pp. 3651
–3655
.19.
Wessells
, C. D.
, Huggins
, R. A.
, and Cui
, Y.
, 2011
, “Copper Hexacyanoferrate Battery Electrodes With Long Cycle Life and High Power
,” Nat. Commun.
, 21
, p. 550
.20.
Le Thai
, M.
, Chandran
, G. T.
, Dutta
, R. K.
, Li
, X.
, and Penner
, R. M.
, 2016
, “100k Cycles and Beyond: Extraordinary Cycle Stability for MnO2 Nanowires Imparted by a Gel Electrolyte
,” ACS Energy Lett.
, 1
(1), pp. 57
–63
.21.
Chan
, C. K.
, Peng
, H.
, Liu
, G.
, McIlwrath
, K.
, Zhang
, X. F.
, Huggins
, R. A.
, and Cui
, Y.
, 2008
, “High-Performance Lithium Battery Anodes Using Silicon Nanowires
,” Nat. Nanotechnol.
, 3
(1
), pp. 31
–35
.22.
Zheng
, G.
, Yang
, Y.
, Cha
, J. J.
, Hong
, S. S.
, and Cui
, Y.
, 2011
, “Hollow Carbon Nanofiber-Encapsulated Sulfur Cathodes for High Specific Capacity Rechargeable Lithium Batteries
,” Nano Lett.
, 11
(10
), pp. 4462
–4467
.23.
Mukherjee
, R.
, Thomas
, A. V.
, Krishnamurthy
, A.
, and Koratkar
, N.
, 2012
, “Photothermally Reduced Graphene as High-Power Anodes for Lithium-Ion Batteries
,” Acs Nano
, 6
(9
), pp. 7867
–7878
.24.
Wessells
, C. D.
, Peddada
, S. V.
, Huggins
, R. A.
, and Cui
, Y.
, “Nickel Hexacyanoferrate Nanoparticle Electrodes for Aqueous Sodium and Potassium Ion Batteries
,” Nano Lett.
, 11
(12
), pp. 5421
–5425
.25.
Goriparti
, S.
, Miele
, E.
, De Angelis
, F.
, Di Fabrizio
, E.
, Zaccaria
, R. P.
, and Capiglia
, C.
, 2014
, “Review on Recent Progress of Nanostructured Anode Materials for Li-Ion Batteries
,” J. Power Sources
, 257
(1), pp. 421
–443
.26.
Ortiz
, G. F.
, López
, M. C.
, Li
, Y.
, McDonald
, M. J.
, Cabello
, M.
, Tirado
, J. L.
, and Yang
, Y.
, 2016
, “Enhancing the Energy Density of Safer Li-Ion Batteries by Combining High-Voltage Lithium Cobalt Fluorophosphate Cathodes and Nanostructured Titania Anodes
,” Sci. Rep.
, 61
, p. 20656
.27.
Carnegie Mellon University
, 2016
, “Self-Contained, Alloy Type, Thin Film Anodes for Lithium-Ion Batteries
,” World Patent No. WO/2005/076389.28.
Wang
, Y.
, Li
, H.
, He
, P.
, Hosono
, E.
, and Zhou
, H.
, 2010
, “Nano Active Materials for Lithium-Ion Batteries
,” Nanoscale
, 2
(8
), pp. 1294
–1305
.29.
Wu
, H. B.
, Zhang
, G.
, Yu
, L.
, and Lou
, X. W.
, 2016
, “One-Dimensional Metal Oxide–Carbon Hybrid Nanostructures for Electrochemical Energy Storage
,” Nanoscale Horizons
, 1
(1
), pp. 27
–40
.30.
Dunn
, B.
, Kamath
, H.
, and Tarascon
, J. M.
, 2011
, “Electrical Energy Storage for the Grid: A Battery of Choices
,” Science
, 334
(6058
), pp. 928
–935
.31.
Marcacci, S.,
2012
, “New Nanotech Battery Energy Storage System Debuts in Kansas City
,” CleanTechnica
, Mar. 18, epub.32.
Arico
, A. S.
, Bruce
, P.
, Scrosati
, B.
, Tarascon
, J. M.
, and Van Schalkwijk
, W.
, 2005
, “Nanostructured Materials for Advanced Energy Conversion and Storage Devices
,” Nat. Mater.
, 4
(5
), pp. 366
–377
.33.
Wong
, K. V.
(Expert View), 2014
, “Recommendations for Energy Water Nexus Problems
,” ASME J. Energy Resour. Technol.
, 136
(3
), p. 034701
.34.
Wong
, K. V.
, and Pecora
, C.
, 2014
, “Recommendations for Energy-Water-Food Nexus Problems
,” ASME J. Energy Resour. Technol.
, 137
(3
), p. 034701
.35.
Wong
, K. V.
(Expert View), “Energy-Water-Food Nexus and Recommendations for Security
,” ASME J. Energy Resour. Technol.
, 137
(3
), p. 032002
.36.
Wong
, K. V.
, “The Second Law of Thermodynamics and Heat Release to the Global Environment by Human Activities
,” ASME
Paper No. IMECE2010-38201.37.
Wong
, K. V.
, Dai
, Y.
, and Paul
, B.
, “Anthropogenic Heat Release Into the Environment
,” ASME J. Energy Resour. Technol.
, 134
(4
), p. 041602
.38.
Wong
, K. V.
, 2016
, Climate Change
, Momentum Press
, New York
.Copyright © 2017 by ASME
You do not currently have access to this content.