Despite its successful application in controlling excessive water production in many mature oilfields, polymer gel is facing some application limitations under harsh reservoir conditions. To settle these problems, an environmental friendly improved inorganic aluminum gel that composed of polyaluminum chloride (PAC) as main agent, urea as activator, and sodium sulfate as syneresis inhibitor was developed. The effects of mass ratios of PAC and urea, component concentrations and temperature on gelation performance were studied. The gel compatibility with various formation brines, long-term thermal stability, and permeability reduction ability were evaluated to account for the feasibility of gel application. Results showed that as the mass ratio of PAC and urea increased, the gelation time increased and the degree of syneresis decreased. The gelation time and the degree of syneresis decreased with the increase of sodium sulfate concentration, which indicated that sodium sulfate could play a role in accelerating gelation and inhibiting gel syneresis. The gelation time decreased with increasing temperature. The gel could tolerate sodium chloride concentration up to 150 g·L−1 and calcium chloride concentration up to 25 g·L−1. After aging for 120 days at 130 °C, no syneresis was observed in gel samples, which indicated that the gel had good, long-term thermal stability. The gel had good permeability reduction ability and was effective in plugging high permeability zone. Thus, these results indicated that the improved inorganic gel could be a potential candidate for conformance control under harsh reservoir conditions.

References

1.
Wojtanowicz
,
A. K.
, and
Shirman
,
E. I.
,
2002
, “
Inflow Performance and Pressure Interference in Dual-Completed Wells With Water Coning Control
,”
ASME J. Energy Resour. Technol.
,
124
(
4
), pp.
253
261
.
2.
Ju
,
B.
,
Qiu
,
X.
,
Dai
,
S.
,
Fan
,
T.
,
Wu
,
H.
, and
Wang
,
X.
,
2008
, “
A Study to Prevent Bottom Water From Coning in Heavy-Oil Reservoirs: Design and Simulation Approaches
,”
ASME J. Energy Resour. Technol.
,
130
(
3
), p.
033102
.
3.
Bekbauov
,
B. E.
,
Kaltayev
,
A.
,
Wojtanowicz
,
A. K.
, and
Panfilov
,
M.
,
2013
, “
Numerical Modeling of the Effects of Disproportionate Permeability Reduction Water-Shutoff Treatments on Water Coning
,”
ASME J. Energy Resour. Technol.
,
135
(
1
), p.
011101
.
4.
Xianchao
,
C.
,
Qihong
,
F.
, and
Qiang
,
W.
,
2014
, “
Performance Prediction of Gel Water Shutoff in Horizontal Wells Using a Newly Coupled Reservoir–Wellbore Model
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
022903
.
5.
Liu
,
Y.
,
Bai
,
B.
, and
Wang
,
Y.
,
2010
, “
Applied Technologies and Prospects of Conformance Control Treatments in China
,”
Oil Gas Sci. Technol.
,
65
(
6
), pp.
859
878
.
6.
You
,
Q.
,
Dai
,
C.
,
Tang
,
Y.
,
Guan
,
P.
,
Zhao
,
G.
, and
Zhao
,
F.
,
2013
, “
Study on Performance Evaluation of Dispersed Particle Gel for Improved Oil Recovery
,”
ASME J. Energy Resour. Technol.
,
135
(
4
), p.
042903
.
7.
Moradi-Araghi
,
A.
,
2000
, “
A Review of Thermally-Stable Gels for Fluid Diversion in Petroleum Production
,”
J. Pet. Sci. Eng.
,
26
(
1
), pp.
1
10
.
8.
Wang
,
C.
,
Liu
,
H.
,
Zheng
,
Q.
,
Liu
,
Y.
,
Dong
,
X.
, and
Hong
,
C.
,
2016
, “
A New High-Temperature Gel for Profile Control in Heavy Oil Reservoirs
,”
ASME J. Energy Resour. Technol.
,
138
(
2
), p.
022901
.
9.
Bryant
,
S. L.
,
Bartosek
,
M.
, and
Lockhart
,
T. P.
,
1997
, “
Laboratory Evaluation of Phenol—Formaldehyde/Polymer Gelants for High-Temperature Applications
,”
J. Pet. Sci. Eng.
,
17
(
3
), pp.
197
209
.
10.
Zhao
,
G.
,
Dai
,
C.
,
Chen
,
A.
,
Yan
,
Z.
, and
Zhao
,
M.
,
2015
, “
Experimental Study and Application of Gels Formed by Nonionic Polyacrylamide and Phenolic Resin for In-Depth Profile Control
,”
J. Pet. Sci. Eng.
,
135
, pp.
552
560
.
11.
Kulawardana
,
E. U.
,
Koh
,
H.
,
Kim
,
D. H.
,
Liyanage
,
P. J.
,
Upamali
,
K.
,
Huh
,
C.
,
Weerasooriya
,
U.
, and
Pope
,
G. A.
,
2012
, “
Rheology and Transport of Improved EOR Polymers Under Harsh Reservoir Conditions
,”
SPE
Improved Oil Recovery Symposium
, Tulsa, OK, Apr. 14–18, Paper No. SPE 154294.
12.
Zhang
,
J.
,
He
,
H.
,
Wang
,
Y.
,
Xu
,
X.
,
Zhu
,
Y.
, and
Li
,
R.
,
2014
, “
Gelation Performance and Microstructure Study of Chromium Gel and Phenolic Resin Gel in Bulk and Porous Media
,”
ASME J. Energy Resour. Technol.
,
136
(
4
), p.
042910
.
13.
He
,
H.
,
Wang
,
Y.
,
Sun
,
X.
,
Zhang
,
P.
, and
Li
,
D.
,
2015
, “
Development and Evaluation of Organic/Inorganic Combined Gel for Conformance Control in High-Temperature and High-Salinity Reservoirs
,”
J. Pet. Explor. Prod. Technol.
,
5
(
2
), pp.
211
217
.
14.
He
,
H.
,
Wang
,
Y.
,
Zhang
,
J.
,
Xu
,
X.
,
Zhu
,
Y.
, and
Bai
,
S.
,
2015
, “
Comparison of Gelation Behavior and Morphology of Resorcinol–Hexamethylenetetramine–HPAM Gel in Bulk and Porous Media
,”
Transp. Porous Media
,
109
(
2
), pp.
377
392
.
15.
Gommes
,
C. J.
, and
Roberts
,
A. P.
,
2008
, “
Structure Development of Resorcinol–Formaldehyde Gels: Microphase Separation or Colloid Aggregation
,”
Phys. Rev. E
,
77
(
4
), p.
041409
.
16.
Zhuang
,
Y.
,
Pandey
,
S.
,
McCool
,
N. C.
, and
Willhite
,
G.
,
2000
, “
Permeability Modification With Sulfomethylated Resorcinol–Formaldehyde Gel System
,”
SPE Reservoir Eval. Eng.
,
3
(
5
), pp.
386
393
.
17.
Banerjee
,
R.
,
Ghosh
,
B.
,
Khilar
,
K.
,
Boukadi
,
F.
, and
Bemani
,
A.
,
2008
, “
Field Application of Phenol Formaldehyde Gel in Oil Reservoir Matrix for Water Shut-Off Purposes
,”
Energy Sources, Part A
,
30
(
19
), pp.
1779
1787
.
18.
Jia
,
H.
,
Pu
,
W.-F.
,
Zhao
,
J.-Z.
, and
Liao
,
R.
,
2011
, “
Experimental Investigation of the Novel Phenol–Formaldehyde Cross-Linking HPAM Gel System: Based on the Secondary Cross-Linking Method of Organic Cross-Linkers and Its Gelation Performance Study After Flowing Through Porous Media
,”
Energy Fuels
,
25
(
2
), pp.
727
736
.
19.
Sengupta
,
B.
,
Sharma
,
V.
, and
Udayabhanu
,
G.
,
2012
, “
Gelation Studies of an Organically Cross-Linked Polyacrylamide Water Shut-Off Gel System at Different Temperatures and PH
,”
J. Pet. Sci. Eng.
,
81
, pp.
145
150
.
20.
Yadav
,
U. S.
, and
Mahto
,
V.
,
2013
, “
Investigating the Effect of Several Parameters on the Gelation Behavior of Partially Hydrolyzed Polyacrylamide–Hexamine–Hydroquinone Gels
,”
Ind. Eng. Chem. Res.
,
52
(
28
), pp.
9532
9537
.
21.
Mary
,
H.
,
Wouter
,
B.
,
Aly
,
H.
,
Jarl
,
V.
, and
John
,
W.
,
1999
, “
The First Carbonate Field Application of a New Organically Crosslinked Water Shutoff Polymer System
,”
SPE International Symposium on Oilfield Chemistry
, Houston, TX, Feb. 16–19, Paper No. SPE 50738.
22.
Reddy
,
B.
,
Eoff
,
L.
,
Dalrymple
,
E. D.
,
Black
,
K.
,
Brown
,
D.
, and
Rietjens
,
M.
,
2003
, “
A Natural Polymer-Based Cross-Linker System for Conformance Gel Systems
,”
SPE J.
,
8
(
02
), pp.
99
106
.
23.
Al-Muntasheri
,
G. A.
,
Nasr-El-Din
,
H. A.
, and
Hussein
, I
. A.
,
2007
, “
A Rheological Investigation of a High-Temperature Organic Gel Used for Water Shut-Off Treatments
,”
J. Pet. Sci. Eng.
,
59
(
1
), pp.
73
83
.
24.
Eoff
,
L. S.
,
Dalrymple
,
E. D.
,
Everett
,
D. M.
, and
Vasquez
,
J. E.
,
2007
, “
Worldwide Field Applications of a Polymeric Gel System for Conformance Applications
,”
SPE Prod. Oper.
,
22
(
2
), pp.
231
235
.
25.
Al-Muntasheri
,
G. A.
,
Nasr-El-Din
,
H. A.
,
Al-Noaimi
,
K.
, and
Zitha
,
P. L.
,
2009
, “
A Study of Polyacrylamide-Based Gels Crosslinked With Polyethyleneimine
,”
SPE J.
,
14
(
2
), pp.
245
251
.
26.
Al-Muntasheri
,
G. A.
,
Zitha
,
P. L.
, and
Nasr-El-Din
,
H. A.
,
2010
, “
A New Organic Gel System for Water Control: A Computed Tomography Study
,”
SPE J.
,
15
(
1
), pp.
197
207
.
27.
Nasr-El-Din
,
H.
, and
Taylor
,
K.
,
2005
, “
Evaluation of Sodium Silicate/Urea Gels Used for Water Shut-Off Treatments
,”
J. Pet. Sci. Eng.
,
48
(
3
), pp.
141
160
.
28.
Hamouda
,
A. A.
, and
Amiri
,
H. A. A.
,
2014
, “
Factors Affecting Alkaline Sodium Silicate Gelation for In-Depth Reservoir Profile Modification
,”
Energies
,
7
(
2
), pp.
568
590
.
29.
Hatzignatiou
,
D. G.
,
Helleren
,
J.
, and
Stavland
,
A.
,
2014
, “
Numerical Evaluation of Dynamic Core-Scale Experiments of Silicate Gels for Fluid Diversion and Flow-Zone Isolation
,”
SPE Prod. Oper.
,
29
(
2
), pp.
122
138
.
30.
Pham
,
L. T.
, and
Hatzignatiou
,
D. G.
,
2016
, “
Rheological Evaluation of a Sodium Silicate Gel System for Water Management in Mature, Naturally-Fractured Oilfields
,”
J. Pet. Sci. Eng.
,
138
, pp.
218
233
.
31.
Hatzignatiou
,
D. G.
,
Askarinezhad
,
R.
,
Giske
,
N. H.
, and
Stavland
,
A.
,
2016
, “
Laboratory Testing of Environmentally Friendly Sodium Silicate Systems for Water Management Through Conformance Control
,”
SPE Prod. Oper.
,
31
(
4
), pp.
337
350
.
32.
Chan
,
K. S.
,
1989
, “
Injection Conformance Modification With a New Non-Polymer Gelling System
,”
40th Annual Technical Meeting of the Petroleum Society of
CIM, BANFF
, May 28–31, Paper No. SPE 894046.
33.
Fragachan
,
F.
,
Cazares-Robles
,
F.
,
Gutiérrez
,
J.
, and
Herrera
,
G.
,
1996
, “
Controlling Water Production in Naturally Fractured Reservoirs With Inorganic Gel
,”
International Petroleum Conference and Exhibition of Mexico
, Villahermosa, Mexico, Mar. 5–7, Paper No. SPE 35325.
34.
Altunina
,
L.
, and
Kuvshinov
,
V.
,
2000
, “
Evolution Tendencies of Physico-Chemical EOR Methods
,”
SPE
European Petroleum Conference
, Paris, France, Oct. 24–25, Paper No. SPE 65173.
35.
Altunina
,
L.
, and
Kuvshinov
,
V.
,
2008
, “
Improved Oil Recovery of High-Viscosity Oil Pools With Physicochemical Methods and Thermal-Steam Treatments
,”
Oil Gas Sci. Technol.
,
63
(
1
), pp.
37
48
.
36.
He
,
H.
,
Wang
,
Y.
,
Qi
,
Z.
,
Lv
,
P.
, and
Guo
,
M.
,
2013
, “
The Study of an Inorganic Gel for Profile Modification in High-Temperature and Low-Permeability Sandstone Reservoirs
,”
Pet. Sci. Technol.
,
31
(
19
), pp.
1940
1947
.
37.
Jia
,
Z.
,
He
,
F.
, and
Liu
,
Z.
,
2004
, “
Synthesis of Polyaluminum Chloride With a Membrane Reactor: Operating Parameter Effects and Reaction Pathways
,”
Ind. Eng. Chem. Res.
,
43
(
1
), pp.
12
17
.
38.
Liu
,
H.-J.
,
Qu
,
J.-H.
,
Hu
,
C.-Z.
, and
Zhang
,
S.-J.
,
2003
, “
Characteristics of Nanosized Polyaluminum Chloride Coagulant Prepared by Electrolysis Process
,”
Colloids Surf.
, A,
216
(
1
), pp.
139
147
.
39.
Zhou
,
W.
,
Gao
,
B.
,
Yue
,
Q.
,
Liu
,
L.
, and
Wang
,
Y.
,
2006
, “
Al-Ferron Kinetics and Quantitative Calculation of Al (III) Species in Polyaluminum Chloride Coagulants
,”
Colloids Surf., A
,
278
(
1
), pp.
235
240
.
You do not currently have access to this content.