To gain a better understanding of the enhanced shale gas recovery by CO2 gas injection (CO2-ESGR) technique, the dynamic displacement mechanism of CO2–CH4, the CO2 enhanced shale gas recovery (RCH4), and CO2 storage capacity (VCO2) were studied based on transport properties of CO2 and CH4. Experiments of CO2 injection into shale gas reservoir preadsorbed by CH4 were performed in a fixed bed. Breakthrough curves were obtained under different test conditions and simulated by one-dimension advection-dispersion (AD) model. It was found that dispersion coefficient (K1) rather than molecular diffusivity of CO2 dominated its transport in shale. K1 together with advection velocity (υ) of CO2 during CH4 displacement controls RCH4 and VCO2. When transporting in shale gas reservoir, CO2 had larger dynamic adsorption amount and υ, but smaller K1 than CH4. The competitive transport and adsorption behavior of CO2 and CH4 made it possible for CO2 to store in shale reservoir and to drive the in-place CH4 out of shale reservoir. The transfer zone of CO2–CH4 displacement (CCD) was very wide. High RCH4 and VCO2 were reached at low injection CO2 gas pressure and for small shale particles. Higher injection flow rates of CO2 and temperatures ranging from 298 K to 338 K had a little effect on RCH4 and VCO2. For field conditions, high CO2 injection pressure has to be used because the pore pressure of shale reservoir and adsorption amount of CH4 increase with the increase in depth of shale gas reservoir, but RCH4 is still not high.

References

References
1.
Pei
,
P.
,
Ling
,
K. G.
,
He
,
J.
, and
Liu
,
Z. Z.
,
2015
, “
Shale Gas Reservoir Treatment by a CO2-Based Technology
,”
J. Nat. Gas Sci. Eng.
,
26
, pp.
1595
1606
.
2.
Javadpour
,
F.
,
Fisher
,
D.
, and
Unsworth
,
M.
,
2007
, “
Nanoscale Gas Flow in Shale Gas Sediments
,”
J. Can. Pet. Technol.
,
46
(
10
), pp.
55
61
.
3.
Li
,
J.
,
Guo
,
B. Y.
, and
Feng
,
Y.
,
2014
, “
An Analytical Solution of Fracture-Induced Stress and Its Application in Shale Gas Exploitation
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
023102
.
4.
Tunde
,
O.
, Jr.
,
Wang
,
John
,
Y. L.
, and
Ertekin
,
T.
,
2013
, “
Factors Affecting Hydraulically Fractured Well Performance in the Marcellus Shale Gas Reservoirs
,”
ASME J. Energy Resour. Technol.
,
135
(
1
), p.
013402
.
5.
Li
,
J.
,
Guo
,
B. Y.
, and
Ling
,
K. G.
,
2013
, “
Flow Diverting for Reducing Wellbore Erosion in Gas-Drilling Shale Gas Wells
,”
ASME J. Energy Resour. Technol.
,
135
(
3
), p.
031501
.
6.
Yuan
,
B.
,
Moghanloo
,
R. G.
, and
Shariff
,
E.
,
2016
, “
Integrated Investigation of Dynamic Drainage Volume and Inflow Performance Relationship (Transient IPR) to Optimize Multistage Fractured Horizontal Wells in Tight/Shale Formations
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052901
.
7.
Fathi
,
E.
, and
Akkutlu
,
I. Y.
,
2014
, “
Multi-Component Gas Transport and Adsorption Effects During CO2 Injection and Enhanced Shale Gas Recovery
,”
Int. J. Coal Geol.
,
123
, pp.
52
61
.
8.
Shabro
,
V.
,
Torres-Verdin
,
C.
, and
Javadpour
,
F.
,
2011
, “
Numerical Simulation of Shale-Gas Production: From Pore-Scale Modelling of Slip-Flow, Kundsen Diffusion, and Langmuir Desorption to Reservoir Modelling of Compressible Fluid
,”
SPE
North American Unconventional Gas Conference and Exhibition
, The Woodlands, TX, June 14–16, SPE Paper No. 144355-MS.
9.
Liang
,
C.
,
Jiang
,
Z. X.
,
Yang
,
Y. T.
, and
Wei
,
X. J.
,
2012
, “
Characteristics of Shale Lithofacies and Reservoir Space of the Wufeng-Longmaxi Formation, Sichuan Basin
,”
Pet. Explor. Dev.
,
39
(
6
), pp.
691
698
.
10.
Luo
,
X. R.
,
Wang
,
S. Z.
,
Wang
,
Z. G.
,
Jing
,
Z. F.
,
Lv
,
M. M.
,
Zhai
,
Z. D.
, and
Han
,
T.
,
2015
, “
Adsorption of Methane, Carbon Dioxide and Their Binary Mixtures on Jurassic Shale From the Qaidam Basin in China
,”
Int. J. Coal Geol.
,
150–151
, pp.
210
223
.
11.
Wang
,
L. G.
,
Cheng
,
Y. P.
, and
Wang
,
Y. K.
,
2014
, “
Laboratory Study of the Displacement Coalbed CH4 Process and Efficiency of CO2 and N2 Injection
,”
Sci. World J.
,
2014
, p.
242047
.
12.
Shi
,
J. Q.
,
Mazumder
,
S.
,
Wolf
,
K. H.
, and
Durucan
,
S.
,
2008
, “
Competitive Methane Desorption by Supercritical CO2 Injection in Coal
,”
Transp. Porous Media
,
75
(
1
), pp.
35
54
.
13.
Dutka
,
B.
,
Kudasik
,
M.
, and
Topolnicki
,
J.
,
2012
, “
Pore Pressure Changes Accompanying Exchange Sorption of CO2/CH4 in a Coal Briquette
,”
Fuel Process. Technol.
,
100
, pp.
30
34
.
14.
Dutka
,
B.
,
Kudasik
,
M.
,
Pokryszka
,
Z.
,
Skoczylas
,
N.
,
Topolnicki
,
J.
, and
Wierzbicki
,
M.
,
2013
, “
Balance of CO2/CH4 Exchange Sorption in a Coal Briquette
,”
Fuel Process. Technol.
,
106
, pp.
95
101
.
15.
Duan
,
S.
,
Gu
,
M.
,
Du
,
X. D.
, and
Xian
,
X. F.
,
2016
, “
Adsorption Equilibrium of CO2 and CH4 and Their Mixture on Sichuan Basin Shale
,”
Energy Fuels
,
30
(
3
), pp.
2248
2256
.
16.
Jiang
,
J. M.
,
Shao
,
Y. Y.
, and
Younis
,
R. M.
,
2014
, “
Development of a Multi-Continuum Multi-Component Model for Enhanced Gas Recovery and CO2 Storage in Fractured Shale Gas Reservoirs
,”
SPE
Improved Oil Recovery Symposium
, Tulsa, OK, Apr. 12–16, SPE Paper No. 169114-MS.
17.
Sun
,
H.
,
Yao
,
J.
,
Gao
,
S. H.
,
Fan
,
D. Y.
,
Wang
,
C. C.
, and
Sun
,
Z. X.
,
2013
, “
Numerical Study of CO2 Enhanced Natural Gas Recovery and Sequestration in Shale Gas Reservoirs
,”
Int. J. Greenhouse Gas Control
,
19
, pp.
406
419
.
18.
Ho
,
C. K.
, and
Webb
,
S. W.
,
2006
,
Gas Transport in Porous Media
,
Springer
,
Dordrecht, The Netherlands
.
19.
Zhang
,
S. W.
,
Meng
,
Z. Y.
,
Guo
,
Z. F.
,
Zhang
,
M. Y.
, and
Han
,
C. Y.
,
2014
, “
Characteristics and Major Controlling Factors of Shale Gas Reservoirs in the Longmaxi Fm, Fuling Area, Sichuan Basin
,”
Nat. Gas Ind.
,
34
(
12
), pp.
16
24
.
20.
Weniger
,
P.
,
Kalkreuth
,
W.
,
Busch
,
A.
, and
Kross
,
B. M.
,
2010
, “
High-Pressure Methane and Carbon Dioxide Sorption on Coal and Shale Samples From the Paraná Basin, Brazil
,”
Int. J. Coal Geol.
,
84
(3–4), pp.
190
205
.
21.
Heller
,
R.
, and
Zoback
,
M.
,
2014
, “
Adsorption of Methane and Carbon Dioxide on Gas Shale and Pure Mineral Samples
,”
J. Unconv. Oil Gas Resour.
,
8
, pp.
14
24
.
22.
Lior
,
N.
,
2016
, “
Exergy, Energy, and Gas Flow Analysis of Hydrofractured Shale Gas Extraction
,”
ASME J. Energy Resour. Technol.
,
138
(
6
), p.
061601
.
23.
Zhou
,
D. S.
,
Zheng
,
P.
,
Peng
,
J.
, and
He
,
P.
,
2015
, “
Induced Stress and Interaction of Fractures During Hydraulic Fracturing in Shale Formation
,”
ASME J. Energy Resour. Technol.
,
137
(
6
), p.
062902
.
24.
Rexer
,
T. F.
,
Mathia
,
E. J.
,
Aplin
,
A. C.
, and
Thomas
,
K. M.
,
2014
, “
High-Pressure Methane Adsorption and Characterization of Pores in Posidonia Shales and Isolated Kerogens
,”
Energy Fuels
,
28
(
5
), pp.
2886
2901
.
25.
Cui
,
X. J.
,
Bustin
,
R. M.
, and
Dipple
,
G.
,
2004
, “
Selective Transport of CO2, CH4, and N2 in Coals: Insights From Modeling of Experimental Gas Adsorption Data
,”
Fuel
,
83
(3), pp.
293
303
.
26.
Seo
,
J. G.
, and
Mamora
,
D. D.
,
2005
, “
Experimental and Simulation Studies of Sequestration of Supercritical Carbon Dioxide in Depleted Gas Reservoirs
,”
ASME J. Energy Resour. Technol.
,
127
(
1
), pp.
1
6
.
27.
Honari
,
A.
,
Bijeljic
,
B.
,
Johns
,
M. L.
, and
May
,
E. F.
,
2015
, “
Enhanced Gas Recovery With CO2 Sequestration: The Effect of Medium Heterogeneity on the Dispersion of Supercritical CO2–CH4
,”
Int. J. Greenhouse Gas Control
,
39
, pp.
39
50
.
28.
Hughes
,
T. J.
,
Honari
,
A.
,
Graham
,
B. F.
,
Chauhan
,
A. S.
,
Johns
,
M. L.
, and
May
,
E. F.
,
2012
, “
CO2 Sequestration for Enhanced Gas Recovery: New Measurements of Supercritical CO2–CH4 Dispersion in Porous Media and a Review of Recent Research
,”
Int. J. Greenhouse Gas Control
,
9
, pp.
457
468
.
29.
Liu
,
S. Y.
,
Zhang
,
Y.
,
Xing
,
W. L.
,
Jian
,
W. W.
,
Liu
,
Z. Y.
,
Li
,
T. T.
, and
Song
,
Y. C.
,
2015
, “
Laboratory Experiment of CO2–CH4 Displacement and Dispersion in Sandpacks in Enhanced Gas Recovery
,”
J. Nat. Gas Sci. Eng.
,
26
, pp.
1585
1594
.
30.
Mamora
,
D. D.
, and
Seo
,
J. G.
,
2002
, “
Enhanced Gas Recovery by Carbon Dioxide Sequestration in Depleted Gas Reservoirs
,”
SPE
Annual Technical Conference and Exhibition
, San Antonio, TX, Sept. 29–Oct. 2, SPE Paper No. 77347-MS.
31.
Jiang
,
G. D.
,
Huang
,
Q. L.
,
Kenarsari
,
S. D.
,
Hu
,
X.
,
Russell
,
A. G.
,
Fan
,
M. H.
, and
Shen
,
X. D.
,
2015
, “
A New Mesoporous Amine-TiO2 Based Pre-Combustion CO2 Capture Technology
,”
Appl. Energy
,
147
, pp.
214
223
.
32.
Carberry
,
J. J.
,
1960
, “
A Boundary-Layer Model of Fluid-Particle Mass Transfer in Fixed Beds
,”
AIChE J.
,
6
(
3
), pp.
460
463
.
33.
Busch
,
A.
,
Gensterblum
,
Y.
,
Krooss
,
B. M.
, and
Littke
,
R.
,
2004
, “
Methane and Carbon Dioxide Adsorption-Diffusion Experiments on Coal: Upscaling and Modeling
,”
Int. J. Coal Geol.
,
60
(2–4), pp.
151
168
.
34.
Zhang
,
X. P.
,
Zhao
,
X.
,
Hu
,
J. Q.
,
Wei
,
C. H.
, and
Bi
,
H. T.
,
2011
, “
Adsorption Dynamics of Trichlorofluoromethane in Activated Carbon Fiber Bed
,”
J. Hazard. Mater.
,
186
(2–3), pp.
1816
1822
.
You do not currently have access to this content.