In order to effectively plug the fracture channeling-path in the high water cut fractured low permeability reservoir, a new type of water shutoff agent is developed by bottle tests and its injectivity and plugging performance in fractures are systematically studied by rheology and fractured core displacement experiment. The gelant consists of modified starch, dimethyl diallyl ammonium chloride, N,N′-methylene diacrylamide, and potassium persulfate, which behaves as a Newtonian with a good flowing capacity that allows its accurate positioning in the fractures. After gelatinization, the gel has high elastic modulus and viscous modulus. During the gelant injection into the fractured core, the filtration from fracture into matrix of the gelant leads to a difference between the injection volume of the gelant and the plugged fracture volume. Thus, a mathematical model for calculating filtration volume is established and applied in plugging experiment very well. After plugging, the two block cores can be tightly cemented together by the starch gel. The experiments show that the water shutoff agent and the mathematical model of filtration can be used to effectively plug the fracture channeling-path in the high water cut fractured low permeability reservoir.

References

References
1.
Gao
,
Y.
,
Zhao
,
M.
,
Wang
,
J.
, and
Zong
,
C.
,
2014
, “
Performance and Gas Breakthrough During CO2 Immiscible Flooding in Ultra-Low Permeability Reservoirs
,”
Pet. Explor. Dev.
,
41
(
1
), pp.
88
95
.
2.
Wang
,
G.
,
Zheng
,
X.
,
Zhang
,
Y.
,
Lu
,
W.
,
Wang
,
F.
, and
Yin
,
L.
,
2015
, “
A New Screening Method of Low Permeability Reservoirs Suitable for CO2 Flooding
,”
Pet. Explor. Dev.
,
42
(
3
), pp.
390
396
.
3.
Zhao
,
D. F.
,
Liao
,
X. W.
, and
Yin
,
D. D.
,
2014
, “
Evaluation of CO2 Enhanced Oil Recovery and Sequestration Potential in Low Permeability Reservoirs, Yanchang Oilfield
,”
J. Energy Inst.
,
87
(
4
), pp.
306
313
.
4.
Xiao
,
L.
,
Zou
,
C.
,
Mao
,
Z.
,
Shi
,
Y.
,
Liu
,
X.
,
Jin
,
Y.
,
Guo
,
H.
, and
Hu
,
X.
,
2013
, “
Estimation of Water Saturation From Nuclear Magnetic Resonance (NMR) and Conventional Logs in Low Permeability Sandstone Reservoirs
,”
J. Pet. Sci. Eng.
,
108
, pp.
40
51
.
5.
Hofmann
,
H.
,
Babadagli
,
T.
, and
Zimmermann
,
G.
,
2014
, “
Numerical Simulation of Complex Fracture Network Development by Hydraulic Fracturing in Naturally Fractured Ultratight Formations
,”
ASME J. Energy Resour. Technol.
,
136
(
4
), p.
042905
.
6.
Obinna
,
E. D.
, and
Hassan
,
D.
,
2016
, “
Characterizing Tight Oil Reservoirs With Dual- and Triple-Porosity Models
,”
ASME J. Energy Resour. Technol.
,
138
(
3
), p.
032801
.
7.
Yuan
,
Z.
,
Wang
,
J.
,
Li
,
S.
,
Ren
,
J.
, and
Zhou
,
M.
,
2014
, “
A New Approach to Estimating Recovery Factor for Extra-Low Permeability Water-Flooding Sandstone Reservoirs
,”
Pet. Explor. Dev.
,
41
(
3
), pp.
377
386
.
8.
Ge
,
Y.
,
Li
,
S.
, and
Qu
,
K.
,
2014
, “
A Novel Empirical Equation for Relative Permeability in Low Permeability Reservoirs
,”
Chin. J. Chem. Eng.
,
22
(
11–12
), pp.
1274
1278
.
9.
Wang
,
Y.
,
Song
,
X.
,
Tian
,
C.
,
Shi
,
C.
,
Li
,
J.
,
Hui
,
G.
,
Hou
,
J.
,
Gao
,
C.
,
Wang
,
X.
, and
Liu
,
P.
,
2015
, “
Dynamic Fractures Are an Emerging New Development Geological Attribute in Water-Flooding Development of Ultra-Low Permeability Reservoirs
,”
Pet. Explor. Dev.
,
42
(
2
), pp.
247
253
.
10.
Gu
,
S.
,
Liu
,
Y.
,
Chen
,
Z.
, and
Ma
,
C.
,
2014
, “
A Method for Evaluation of Water Flooding Performance in Fractured Reservoirs
,”
J. Pet. Sci. Eng.
,
120
, pp.
130
140
.
11.
Ghosh
,
B.
,
Bemani
,
A. S.
,
Wahaibi
,
Y. M.
,
Hadrami
,
H.
, and
Fathi
,
H. B.
,
2012
, “
Development of a Novel Chemical Water Shut-Off Method for Fractured Reservoirs: Laboratory Development and Verification Through Core Flow Experiments
,”
J. Pet. Sci. Eng.
,
96–97
, pp.
176
184
.
12.
Li
,
L.
,
Han
,
X.
, and
Meng
,
L.
,
2012
, “
Experimental Research on Profile Control for Oil Displacement by Functional Polymer in Low Permeability Fractured Reservoir
,”
Phys. Proc.
,
25
, pp.
1292
1300
.
13.
Lu
,
J.
,
Goudarzi
,
A.
,
Chen
,
P.
,
Kim
,
D. H.
,
Delshad
,
M.
,
Mohanty
,
K. K.
,
Sepehrnoori
,
K.
,
Weerasooriya
,
U. P.
, and
Pope
,
G. A.
,
2014
, “
Enhanced Oil Recovery From High-Temperature, High-Salinity Naturally Fractured Carbonate Reservoirs by Surfactant Flood
,”
J. Pet. Sci. Eng.
,
124
, pp.
122
131
.
14.
Zhang
,
J.
,
He
,
H.
,
Wang
,
Y. F.
,
Xu
,
X. L.
,
Zhu
,
Y. J.
, and
Li
,
R. Y.
,
2014
, “
Gelation Performance and Microstructure Study of Chromium Gel and Phenolic Resin Gel in Bulk and Porous Media
,”
ASME J. Energy Resour. Technol.
,
136
(
4
), p.
042910
.
15.
Wang
,
C. J.
,
Liu
,
H. Q.
,
Zheng
,
Q.
,
Liu
,
Y. G.
,
Dong
,
X. H.
, and
Hong
,
C.
,
2016
, “
A New High-Temperature Gel for Profile Control in Heavy Oil Reservoirs
,”
ASME J. Energy Resour. Technol.
,
138
(
2
), p.
022901
.
16.
Chen
,
X. C.
,
Feng
,
Q. H.
, and
Wang
,
Q.
,
2014
, “
Performance Prediction of Gel Water Shutoff in Horizontal Wells Using a Newly Coupled Reservoir-Wellbore Model
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
022903
.
17.
Zhao
,
J. Z.
,
Jia
,
H.
,
Pu
,
W. F.
, and
Liao
,
R.
,
2011
, “
Influences of Fracture Aperture on the Water-Shutoff Performance of Polyethyleneimine Cross-Linking Partially Hydrolyzed Polyacrylamide Gels in Hydraulic Fractured Reservoirs
,”
Energy Fuels
,
25
(
6
), pp.
2616
2624
.
18.
Qing
,
Y.
,
Yefei
,
W.
,
Wei
,
Z.
,
Ziyuan
,
Q.
, and
Fulin
,
Z.
,
2009
, “
Study and Application of Gelled Foam for In-Depth Water Shutoff in a Fractured Oil Reservoir
,”
J. Can. Pet. Technol.
,
48
(
12
), pp.
51
55
.
19.
Goudarzia
,
A.
,
Zhang
,
H.
,
Varavei
,
A.
,
Taksaudoma
,
P.
,
Hu
,
Y.
,
Delshad
,
M.
,
Bai
,
B.
, and
Sepehrnooria
,
K.
,
2015
, “
A Laboratory and Simulation Study of Preformed Particle Gels for Water Conformance Control
,”
Fuel
,
140
, pp.
502
513
.
20.
Zhang
,
L. M.
,
2001
, “
A Review of Starches and Their Derivatives for Oilfield Applications in China
,”
Starch/Stärke
,
53
(
9
), pp.
401
407
.
21.
Salimi
,
K.
,
Yilmaz
,
M.
,
Rzayev
,
Z. M. O.
, and
Piskin
,
E.
,
2014
, “
Controlled Graft Copolymerization of Lactic Acid Onto Starch in a Supercritical Carbon Dioxide Medium
,”
Carbohydr. Polym.
,
114
, pp.
149
156
.
22.
Razali
,
M. A. A.
,
Ismail
,
H.
, and
Ariffin
,
A.
,
2015
, “
Graft Copolymerization of PolyDADMAC to Cassava Starch: Evaluation of Process Variables Via Central Composite Design
,”
Ind. Crops Prod.
,
65
, pp.
535
545
.
23.
Witono
,
J. R.
,
Marsman
,
J. H.
,
Noordergraaf
,
I.
,
Heeres
,
H. J.
, and
Janssen
,
L. P. B. M.
,
2013
, “
Improved Homopolymer Separation to Enable the Application of 1H NMR and HPLC for the Determination of the Reaction Parameters of the Graft Copolymerization of Acrylic Acid Onto Starch
,”
Carbohydr. Res.
,
370
, pp.
38
45
.
24.
Lv
,
X.
,
Song
,
W.
,
Ti
,
Y.
,
Qu
,
L.
,
Zhao
,
Z.
, and
Zheng
,
H.
,
2013
, “
Gamma Radiation-Induced Grafting of Acrylamide and Dimethyl Diallyl Ammonium Chloride Onto Starch
,”
Carbohydr. Polym.
,
92
(
1
), pp.
388
393
.
25.
Brown
,
S.
,
Caprihan
,
A.
, and
Hardy
,
R.
,
1998
, “
Experimental Observation of Fluid Flow Channels in a Single Fracture
,”
J. Geophys. Res.
,
103
(
B3
), pp.
5125
5132
.
26.
Ganguly
,
S.
,
2010
, “
Leak-Off During Placement of Cr(III)-Partially Hydrolyzed Polyacrylamide Gelling Solution in Fractured Porous Media
,”
Transp. Porous Media
,
81
(
3
), pp.
443
460
.
27.
Contreras
,
O.
,
Alsaba
,
M.
,
Hareland
,
G.
,
Husein
,
M.
, and
Nygaard
,
R.
,
2016
, “
Effect on Fracture Pressure by Adding Iron-Based and Calcium-Based Nanoparticles to a Nonaqueous Drilling Fluid for Permeable Formations
,”
ASME J. Energy Resour. Technol.
,
138
(
3
), p.
032906
.
28.
Leng
,
Z.
,
Lv
,
W.
,
Ma
,
D.
,
Liu
,
Q.
,
Yan
,
S.
, and
Li
,
T.
,
2013
, “
Research of Enhancing Oil Recovery Mechanism of GAGD Using CT Scanning Method
,”
Acta Pet. Sin.
,
34
(
2
), pp.
340
345
.
You do not currently have access to this content.