Casing support and zonal isolation are principal objectives in cementing the wells; however, the latter objective always raises the most concern particularly when there is a potential formation fluid migration into the cement sheath. Wellbore integrity is highly dependent upon the integrity of the interfacial bonding between the cement and the formation as well as the bonding between casing and cement. A closer look at the common cement strength test data, performed routinely in the labs, reveals a complicated behavior that cannot be simply modeled using a single parameter, i.e., the interfacial strength. Here, we used cohesive interface constitutive equation to model the behavior of cement interfaces. Formation of microannulus is modeled by utilizing an axisymmetric poroelastic finite element model enriched with cohesive interfaces to simulate initiation of the failure zone and possible broaching of the failure zone along the wellbore to shallower zones. We demonstrated that it is possible to use data produced from routine tests, such as the push-out test, to determine not only the shear strength but also the normal fracture energy and the stiffness of the cement interface. Cohesive interface properties are calibrated such that simulated test results match with the measured response of the specimens. In the next step, we used these parameters to anticipate well-cement behavior for the field-scale problems. A sensitivity analysis is provided to show the role of each parameter in initiation and development of the failure zone. Interestingly, the shear strength, which is commonly measured from push-out tests, is not the only parameter determining the size of the fracture, but other parameters such as normal strength show equally important influence on initiation and propagation of the failure zone. The proposed approach provides a tool for more accurate predictions of cement integrity in the subsurface conditions to quantify the risk of wellbore integrity issues.

References

References
1.
Ekbote
,
S.
,
Abousleiman
,
Y.
,
Cui
,
L.
, and
Zaman
,
M.
,
2004
, “
Analyses of Inclined Boreholes in Poroelastic Media
,”
Int. J. Geomech.
,
4
(
3
), pp.
178
190
.
2.
Chen
,
S.
,
Abousleiman
,
Y.
, and
Muraleetharan
,
K.
,
2012
, “
Closed-Form Elastoplastic Solution for the Wellbore Problem in Strain Hardening/Softening Rock Formations
,”
Int. J. Geomech.
,
12
(
4
), pp.
494
507
.
3.
Taleghani
,
A. D.
, and
Klimenko
,
D.
,
2015
, “
An Analytical Solution for Microannulus Cracks Developed Around the Wellbore
,”
ASME J. Energy Resour. Technol.
,
137
(
6
), p.
062901
.
4.
Nes
,
O.
,
Fjær
,
E.
,
Tronvoll
,
J.
,
Kristiansen
,
T. G.
, and
Horsrud
,
P.
,
2012
, “
Drilling Time Reduction Through an Integrated Rock Mechanics Analysis
,”
ASME J. Energy Resour. Technol.
,
134
(
3
), p.
032802
.
5.
Goodwin
,
K. J.
, and
Crook
,
R. J.
,
1992
, “
Cement Sheath Stress Failure
,”
SPE Drill. Eng.
,
7
(
4
), pp.
291
296
.
6.
Kutchko
,
B. G.
,
Strazisar
,
B. R.
,
Dzombak
,
D. A.
,
Lowry
,
G. V.
, and
Thaulow
,
N.
,
2007
, “
Degradation of Well Cement by CO2 Under Geologic Sequestration Conditions
,”
Environ. Sci. Technol.
,
41
(
13
), pp.
4787
4792
.
7.
van der Kuip
,
M. D. C.
,
Benedictus
,
T.
,
Wildgust
,
N.
, and
Aiken
,
T.
,
2011
, “
High-Level Integrity Assessment of Abandoned Wells
,”
Energy Procedia
,
4
, pp.
5320
5326
.
8.
Bois
,
A. P.
,
Garnier
,
A.
, and
Laudet
,
J. B.
,
2012
, “
Use of a Mechanistic Model to Forecast Cement-Sheath Integrity
,”
SPE Drill. Completion
,
27
(
2
), pp.
303
314
.
9.
Garnier
,
A.
,
Saint-Marc
,
J.
,
Bois
,
A.-P.
, and
Kermanach
,
Y.
,
2010
, “
An Innovative Methodology for Designing Cement-Sheath Integrity Exposed to Steam Stimulation
,”
SPE Drill. Completion
,
25
(
1
), pp.
58
69
.
10.
Jutten
,
J. J.
,
Guillot
,
D.
, and
Parcevaux
,
P. A.
,
1989
, “
Relationship Between Cement Slurry Composition, Mechanical Properties, and Cement-Bond-Log Output
,”
SPE Production Engineering
, pp.
75
82
, Paper No. SPE 16652-PA.
11.
Berger
,
A.
,
Fleckenstein
,
W. W.
,
Eustes
,
A. W.
, and
Thonhauser
,
G.
,
2004
, “
Effect of Eccentricity, Voids, Cement Channels, and Pore Pressure Decline on Collapse Resistance of Casing
,”
SPE
Annual Technical Conference and Exhibition
, Houston, TX, Sept. 26–29, Paper No. SPE 90045.
12.
Bour
,
D.
,
2005
, “
Cyclic Steam Well Design: A New Approach to Solve an Old Problem of Cement Sheath Failure in Cyclic Steam Wells
,”
SPE
Western Regional Meeting
, Irvine, CA, Mar. 30–Apr. 1, Paper No. SPE 93868-MS.
13.
Saidin
,
S.
,
Sonny
,
I.
, and
Nuruddin
,
M. F.
,
2008
, “
A New Approach for Optimizing Cement Design to Eliminate Microannulus in Steam Injection Wells
,”
International Petroleum Technology Conference
, Kuala Lumpur, Malaysia, Dec. 3–5, Paper No. SPE 12407-MS.
14.
Parcevaux
,
P.
, and
Sault
,
P.
,
1984
, “
Cement Shrinkage and Elasticity: A New Approach for a Good Zonal Isolation
,”
Offshore Technology Conference
, Houston, TX, Sept. 16–19, Paper No. SPE 13176.
15.
Ladva
,
H. K. J.
,
Craster
,
B.
,
Jones
,
T. G. J.
,
Goldsmith
,
G.
, and
Scott
,
D.
,
2005
, “
The Cement-to-Formation Interface in Zonal Isolation
,”
IADC/SPE
Asia Pacific Drilling Technology Conference Exhibition
, Kuala Lumpur, Malaysia, Sept. 13–15, Paper No. SPE 88016-PA.
16.
Parcevaux
,
P.
,
1984
, “
Pore Size Distribution of Portland Cement Slurries at Very Early Stage of Hydration
,”
J. Cem. Concr. Res.
,
14
(
3
), pp.
419
430
.
17.
Jackson
,
P. B.
, and
Murphey
,
C. E.
,
1993
, “
Effect of Casing Pressure on Gas Flow Through a Sheath of Set Cement
,”
SPE/IADC
Drilling Conference
, Society of Petroleum Engineers, Amsterdam, The Netherlands, Feb. 22–25, Paper No. SPE-25698-MS.
18.
Wang
,
W.
, and
Taleghani
,
A. D.
,
2014
, “
Three-Dimensional Analysis of Cement Sheath Integrity Around Wellbores
,”
J. Pet. Sci. Eng.
,
121
, pp.
38
51
.
19.
Tahmourpour
,
F.
,
Exner
,
M.
, and
Khallad
,
M.
,
2008
, “
Design and Operational Factors for the Life of the Well and Abandonment
,”
CIPC/SPE
Gas Technology Symposium Joint Conference
, Calgary, AB, Canada, June 16–19, Paper No. SPE 114866.
20.
Ma
,
Y.
,
Cui
,
M. R.
,
Guo
,
X. Y.
,
Shi
,
Q.
, and
Li
,
L.
,
2007
, “
How to Evaluate the Effect of Mud Cake on Cement Bond Quality of Second Interface?
,”
SPE/IADC
Middle East Drilling and Technology Conference
, Cairo, Egypt, Oct. 22–24, Paper No. SPE 108240-MS.
21.
Griffith
,
J. E.
,
Ravi
,
K.
,
Saasen
,
A.
, and
Nødland
,
N. E.
,
2004
, “
Foam Cement Engineering and Implementation for Cement Sheath Integrity at High Temperature and High Pressure
,”
IADC/SPE
Drilling Conference
, Dallas, TX, Mar. 2–4, Paper No. SPE 87194-MS.
22.
Thiercelin
,
M. J.
,
Dargard
,
B.
,
Baret
,
J. F.
, and
Rodriquez
,
W. J.
,
1998
, “
Cement Design Based on Cement Mechanical Response
,”
SPE Drill. Completion
,
13
(
4
), pp.
266
273
.
23.
Fleckenstein
,
W. W.
,
Eustes
,
A. W.
, and
Miller
,
M. G.
,
2000
, “
Burst Induced Stresses in Cemented Wellbores
,”
SPE/AAPG
Western Regional Meeting
, Long Beach, CA, June 19–22, Paper No. SPE 62596-MS.
24.
Ravi
,
K.
,
Mcmechan
,
D. E.
,
Reddy
,
B. R.
, and
Crook
,
R. A.
,
2007
, “
Comparative Study of Mechanical Properties of Density-Reduced Cement Compositions
,”
Annual Technical Conference and Exhibition
, Houston, TX, Sept. 26–29, Paper No. SPE 90068.
25.
Gray
,
K.
,
Podnos
,
E.
, and
Becker
,
E.
,
2009
, “
Finite-Element Studies of Near-Wellbore Region During Cementing Operations: Part I
,”
SPE Drill. Completion
,
24
(
1
), pp.
127
136
.
26.
Nabipour
,
A.
,
Joodi
,
B.
, and
Sarmadivaleh
,
M.
,
2010
, “
Finite Element Simulation of Downhole Stresses in Deep Gas Wells Cements
,”
SPE
Deep Gas Conference and Exhibition
, Manama, Bahrain, Jan. 24–26, Paper No. SPE 132156.
27.
Hutchinson
,
J. W.
,
1990
, “
Mixed Mode Fracture Mechanics of Interfaces
,”
Metal/Ceramic Interfaces
,
4
, pp.
295
306
.
28.
He
,
M. Y.
,
Evans
,
A. G.
, and
Hutchinson
,
J. W.
,
1994
, “
Crack Deflection at an Interface Between Dissimilar Elastic Materials: Role of Residual Stresses
,”
Int. J. Solids Struct.
,
31
(
24
), pp.
3443
3455
.
29.
Yang
,
Z. J.
, and
Chen
,
J. F.
,
2004
, “
Fully Automatic Modelling of Cohesive Discrete Crack Propagation in Concrete Beams Using Local Arc-Length Methods
,”
Int. J. Solids Struct.
,
41
(
3–4
), pp.
801
826
.
30.
Petersson
,
P. E.
,
1981
, “
Crack Growth and Development of Fracture Zone in Plain Concrete and Similar Materials
,” Lund Institute of Technology, Lund, Sweden,
Report No. TVBM-1006
.
31.
Dugdale
,
D. S.
,
1960
, “
Yielding of Steel Sheets Containing Slits
,”
J. Mech. Phys. Solids
,
8
(
2
), pp.
100
104
.
32.
Hillerborg
,
A.
,
Modeer
,
M.
, and
Petersson
,
P.
,
1976
, “
Analysis of Crack Formation and Crack Growth in Concrete by Means of Fracture Mechanics and Finite Elements
,”
Cem. Concr. Res.
,
6
(
6
), pp.
773
781
.
33.
Needleman
,
A.
,
1990
, “
An Analysis of Tensile Decohesion Along an Interface
,”
J. Mech. Phys. Solids
,
38
(
3
), pp.
289
324
.
34.
Camacho
,
G. T.
, and
Ortiz
,
M.
,
1996
, “
Computational Modeling of Impact Damage in Brittle Materials
,”
Int. J. Solids Struct.
,
33
(
20–22
), pp.
2899
2938
.
35.
Pandolfi
,
A.
, and
Ortiz
,
M.
,
2002
, “
An Efficient Adaptive Procedure for Three-Dimensional Fragmentation Simulations
,”
Eng. Comput.
,
18
(
2
), pp.
148
159
.
36.
Yang
,
Z.
, and
Xu
,
X. F.
,
2008
, “
A Heterogeneous Cohesive Model for Quasi-Brittle Materials Considering Spatially Varying Random Fracture Properties
,”
Comput. Methods Appl. Mech. Eng.
,
197
(
45–48
), pp.
4027
4039
.
37.
Yang
,
Z. J.
,
Su
,
X. T.
,
Chen
,
J. F.
, and
Liu
,
G. H.
,
2009
, “
Monte Carlo Simulation of Complex Cohesive Fracture in Random Heterogeneous Quasi-Brittle Materials
,”
Int. J. Solids Struct.
,
46
(
17
), pp.
3222
3234
.
38.
Salehi
,
S.
, and
Nygaard
,
R.
,
2011
, “
Numerical Study of Fracture Initiation, Propagation, Sealing to Enhance Wellbore Fracture Gradient
,”
45th U.S. Rock Mechanics/Geomechanics Symposium
, San Francisco, CA, June 26–29, Paper No. SPE 11-186.
39.
Le Guen
,
Y.
,
Le Gouevec
,
J.
,
Chammas
,
R.
,
Gerard
,
B.
,
Poupard
,
O.
,
Oxand
,
S. A.
,
Van Der Beken
,
A.
, and
Jammes
,
L.
,
2009
, “
CO2 Storage: Managing the Risk Associated With Well Leakage Over Long Time Scales
,”
SPE Projects, Facilities Construct.
,
4
(3), pp.
87
96
.
40.
Nagy
,
P. B.
,
1992
, “
Ultrasonic Classification of Imperfect Interfaces
,”
J. Nondestr. Eval.
,
11
(
3
), pp.
127
139
.
41.
Boyd
,
D.
,
Al-Kubti
,
S.
,
Khedr
,
O. H.
,
Khan
,
N.
,
Al-Nayadi
,
K.
,
Degouy
,
D.
,
Elkadi
,
A.
, and
Kindi
,
Z. A.
,
2006
, “
Reliability of Cement Bond Log Interpretations Compared to Physical Communication Tests Between Formations
,”
Abu Dhabi International Petroleum Exhibition and Conference
, Nov. 5–8, Abu Dhabi, UAE, Paper No. SPE 101420-MS.
42.
Jiang
,
L.
,
Guillot
,
D.
,
Meraji
,
M.
,
Kumari
,
P.
,
Vidick
,
B.
,
Duncan
,
B.
,
Gaafar
,
G. R.
, and
Sansudin
,
S. B.
,
2012
, “
Measuring Isolation Integrity in Depleted Reservoirs
,”
SPWLA
53rd Annual Logging Symposium
, June 16–20, Cartagena, Colombia, Paper No. SPE 2012-078.
43.
Ulm
,
F. J.
,
Constantinides
,
G.
, and
Heukamp
,
F. H.
,
2004
, “
Is Concrete a Poromechanics Materials?—A Multiscale Investigation of Poroelastic Properties
,”
Mater. Struct.
,
37
(
1
), pp.
43
58
.
44.
Ghabezloo
,
S.
,
Sulem
,
J.
,
Guédon
,
S.
,
Martineau
,
F.
, and
Saint-Marc
,
J.
,
2008
, “
Poromechanical Behaviour of Hardened Cement Paste Under Isotropic Loading
,”
Cem. Concr. Res.
,
38
(
12
), pp.
1424
1437
.
45.
Xie
,
M.
, and
Gerstle
,
W. H.
,
1995
, “
Energy-Based Cohesive Crack Propagation Modelling
,”
ASCE J. Eng. Mech.
,
121
(
12
), pp.
1349
1458
.
46.
Tvergaard
,
V.
, and
Hutchinson
,
J. W.
,
1996
, “
Effect of Strain-Dependent Cohesive Zone Model on Predictions of Crack Growth Resistance
,”
Int. J. Solids Struct.
,
33
(20–22), pp.
3297
3308
.
47.
Davila
,
C. G.
,
Camanho
,
P. P.
, and
de Moura
,
M. F.
,
2001
, “
Mixed-Mode Decohesion Elements for Analyses With Progressive Delamination
,” 42nd
AIAA/ASME/ASCE/AHS/ASC
Structures, Structural Dynamics and Materials Conference, Seattle, WA, Vol. 179.
48.
Gerstle
,
W. H.
, and
Xie
,
M.
,
1992
, “
FEM Modeling of Fictitious Crack Propagation in Concrete
,”
J. Eng. Mech.
,
118
(
2
), pp.
416
434
.
49.
Li
,
Y. N.
, and
Liang
,
R. Y.
,
1994
, “
Peak Load Determination in Linear Fictitious Crack Model
,”
ASCE J. Energy Mech.
,
120
(
2
), pp.
232
249
.
50.
Kanninen
,
M.
, and
Popelar
,
C.
,
1985
,
Advanced Fracture Mechanics
,
Oxford University Press
,
Oxford, UK
.
51.
Xie
,
M.
,
Gerstle
,
W. H.
, and
Rahulkumar
,
P.
,
1995
, “
Energy-Based Automatic Mixed-Mode Crack Propagation Modelling
,”
J. Eng. Mech.
,
121
(
8
), pp.
914
923
.
52.
Benzeggagh
,
M. L.
, and
Kenane
,
M.
,
1996
, “
Measurement of Mixed-Mode Delamination Fracture Toughness of Unidirectional Glass/Epoxy Composites With Mixed-Mode Bending Apparatus
,”
Compos. Sci. Technol.
,
56
(
4
), pp.
439
449
.
53.
Carter
,
L. G.
, and
Evans
,
G. W.
,
1964
, “
A Study of Cement-Pipe Bonding
,”
J. Pet. Technol.
,
16
(
2
), pp.
157
160
.
54.
Evans
,
G. W.
, and
Carter
,
L. G.
,
1962
, “
Bounding Studies of Cementing Compositions to Pipe and Formations
,”
Drilling and Production Practice
, New York, Jan. 1.
55.
Detournay
,
E.
, and
Cheng
,
A. H. D.
,
1991
, “
Plane Strain Analysis of a Stationary Hydraulic Fracture in a Poroelastic Medium
,”
Int. J. Solids Struct.
,
27
(
13
), pp.
1645
1662
.
56.
He
,
M. Y.
, and
Hutchinson
,
J. W.
,
1989
, “
Crack Deflection at an Interface Between Dissimilar Elastic Materials
,”
Int. J. Solids Struct.
,
25
(
9
), pp.
1053
1067
.
57.
Mueller
,
D. T.
, and
Eid
,
R. N.
,
2006
, “
Characterization of the Early Time Mechanical Behavior of Well Cements Employed in Surface Casing Operations
,”
IADC/SPE
Drilling Conference
, Miami, FL, Feb. 21–23, Paper No. SPE 98632.
58.
Bourgoyne
,
A. T.
,
Chenevert
,
M. E.
,
Millheim
,
K. K.
, and
Young
,
F. S.
,
1986
, “
Applied Drilling Engineering
,”
Society of Petroleum Engineering
, Vol.
2
, pp.
312
324
.
59.
Haliburton
,
1999
, “Haliburton Redbook: Haliburton Cementing Tables,”
Haliburton
,
Houston, TX
.
You do not currently have access to this content.