A three-dimensional, two-phase, dual-continuum hydraulic fracture (HF) propagation simulator was developed and implemented. This paper presents a detailed method for efficient and effective modeling of the fluid flow within fracture and matrix as well as fluid leakoff, fracture height growth, and the fracture network propagation. Both a method for solving the system of coupled equations, and a verification of the developed model are presented herein.

References

References
1.
Ahn
,
C. H.
,
Chang
,
O. C.
,
Dilmore
,
R.
, and
Wang
,
J. Y.
,
2014
, “
A Hydraulic Fracture Network Propagation Model in Shale Gas Reservoirs: Parametric Studies to Enhance the Effectiveness of Stimulation
,”
SPE Unconventional Resources Technology Conference
, Denver, CO, Aug. 25–27, Paper No. SPE 1922580-MS.
2.
Cipolla
,
C. L.
,
Warpinski
,
N. R.
,
Mayerhofer
,
M. J.
, and
Lolon
,
E. P.
,
2010
, “
The Relationship Between Fracture Complexity, Reservoir Properties, and Fracture-Treatment Design
,”
SPE Prod. Oper.
,
25
(
4
), pp.
438
452
.
3.
Li
,
M.
, and
Lior
,
N.
,
2015
, “
Analysis of Hydraulic Fracturing and Reservoir Performance in Enhanced Geothermal Systems
,”
ASME J. Energy Resour. Technol.
,
137
(
4
), p.
041203
.
4.
Lorenz
,
J. C.
, and
Warpinski
,
N. R.
,
1996
, “
Natural Fracture Characteristics and Effects
,”
Leading Edge
,
15
(
8
), pp.
909
911
.
5.
Osholake
,
T.
,
Wang
,
J. Y.
, and
Ertekin
,
T.
,
2012
, “
Factors Affecting Hydraulically Fractured Well Performance in the Marcellus Shale Gas Reservoirs
,”
ASME J. Energy Resour. Technol.
,
135
(
1
), p.
013402
.
6.
Rahman
,
M.
, and
Rahman
,
M.
,
2011
, “
Optimizing Hydraulic Fracture to Manage Sand Production by Predicting Critical Drawdown Pressure in Gas Well
,”
ASME J. Energy Resour. Technol.
,
134
(
1
), p.
013101
.
7.
Teufel
,
L. W.
, and
Clark
,
J. A.
,
1984
, “
Hydraulic Fracture Propagation in Layered Rock: Experimental Studies of Fracture Containment
,”
SPE J.
,
24
(
1
), pp.
19
32
.
8.
Blanton
,
T. L.
,
1982
, “
Experimental Study of Interaction Between Hydraulically Induced and Pre-Existing Fractures
,”
SPE
Unconventional Gas Recovery Symposium
, Pittsburgh, PA, May 16–18, Paper No. SPE 10847.
9.
Renshaw
,
C. E.
, and
Pollard
,
D. D.
,
1998
, “
An Experimetally Verified Criterion for Propagation Across Unbounded Frictional Interfaces in Brittle Linear Elastic Materials
,”
Int. J. Rock Mech. Min. Sci. Geomech.
,
32
(
3
), pp.
237
249
.
10.
Warpinski
,
N. R.
, and
Teufel
,
L. W.
,
1987
, “
Influence of Geologic Discontinuities on Hydrauli Fracture Propagation
,”
J. Pet. Technol.
,
39
(
2
), pp.
209
220
.
11.
Ahn
,
C. H.
,
Dilmore
,
R.
, and
Wang
,
J. Y.
,
2014
, “
Development of Innovative and Efficient Hydraulic Fracturing Numerical Simulation Model and Parametric Studies in Unconventional Naturally Fractured Reservoirs
,”
J. Unconv. Oil Gas Resour.
,
8
, pp.
25
45
.
12.
Hofmann
,
H.
,
Babadagli
,
T.
, and
Zimmermann
,
G.
,
2014
, “
Numerical Simulation of Complex Fracture Network Development by Hydraulic Fracturing in Naturally Fractured Ultratight Formations
,”
ASME J. Energy Resour. Technol.
,
136
(
4
), p.
042905
.
13.
Keshavarzi
,
R.
, and
Mohammadi
,
S.
,
2012
, “
A New Approach for Numerical Modeling of Hydraulic Fracture Propagation in Naturally Fractured Reservoirs
,”
SPE/EAGE
European Unconventional Resources Conference & Exhibition—From Potential to Production, Vienna, Austria, Mar. 20–22, Paper No. SPE-152509-MS.
14.
Meyer
,
R. B.
, and
Bazan
,
L. W.
,
2011
, “
A Discrete Fracture Network Model for Hydraulically Induced Fractures—Theory, Parametric and Case Studies
,”
SPE
Hydraulic Fracturing Technology Conference
, The Woodlands, TX, Jan. 24–26, Paper No. SPE 140514.
15.
Salehi
,
S.
, and
Nygaard
,
R.
,
2014
, “
Full Fluid–Solid Cohesive Finite-Element Model to Simulate Near Wellbore Fractures
,”
ASME J. Energy Resour. Technol.
,
137
(
1
), p.
012903
.
16.
Taleghani
,
A. D.
, and
Olson
,
J. E.
,
2011
, “
Numerical Modeling of Multistranded-Hydraulic-Fracture Propagation: Accounting for the Interaction Between Induced and Natural Fractures
,”
SPE J.
,
16
(
3
), pp.
575
581
.
17.
Taleghani
,
A. D.
, and
Olson
,
J. E.
,
2013
, “
How Natural Fractures Could Affect Hydraulic-Fracture Geometry
,”
SPE J.
,
19
(
1
), pp.
161
171
.
18.
Weng
,
X.
,
Kresse
,
O.
,
Cohen
,
C.
,
Wu
,
R.
, and
Gu
,
H.
,
2011
, “
Modeling of Hydraulic Fracture Network Propagation in a Naturally Fractured Formation
,”
SPE Prod. Oper.
,
26
(
4
), pp.
368
380
.
19.
Jahromi
,
M. Z.
,
Wang
,
J. Y.
, and
Ertekin
,
T.
,
2013
, “
Development of a Three-Dimensional Three-Phase Fully Coupled Numerical Simulator for Modeling Hydraulic Fracture Propagation in Tight Gas Reservoirs
,” SPE Hydraulic Fracturing Technology Conference (
SPE HFTC
), Woodlands, TX, Feb. 4–6, Paper No. SPE-163850-MS.
20.
Zhang
,
X.
,
Jeffery
,
R. G.
, and
Thiercelin
,
M.
,
2007
, “
Deflection and Propagation of Fruid-Driven Fractures at Frictional Bedding Interfaces: A Numerical Investigation
,”
J. Struct. Geol.
,
29
(
3
), pp.
396
410
.
21.
Zhang
,
X.
,
Jeffery
,
R. G.
, and
Thiercelin
,
M.
,
2007
, “
Effects of Frictional Geological Discontinuities on Hydraulic Fracture Propagation
,”
SPE Hydraulic Fracture Technology Conference
(
SPE HFTC
), College Station, TX, Jan. 29–31, Paper No. SPE 106111.
22.
Stoner
,
M. A.
,
1969
, “
Steady-State Analysis of Gas Production, Transmission and Distribution Systems
,”
Fall Meeting of the
Society of Petroleum Engineers of AIME
, Denver, CO, Sept. 28–Oct. 1, Paper No. SPE 2554.
23.
Zhang
,
X.
, and
Jeffery
,
R. G.
,
2008
, “
Reinitiation or Termination of Fluid Driven Fractures at Frictional Bedding Interfaces
,”
J. Geophys. Res.
,
113
(
B8
), p.
B08416
.
24.
Zhou
,
D.
,
Zheng
,
P.
,
Peng
,
J.
, and
He
,
P.
,
2015
, “
Induced Stress and Interaction of Fractures During Hydraulic Fracturing in Shale Formation
,”
ASME J. Energy Resour. Technol.
,
137
(
6
), p.
062902
.
25.
Gu
,
H.
,
Weng
,
X.
,
Lund
,
J. B.
,
Mack
,
M. G.
,
Ganguly
,
U.
, and
Suarez-Rivera
,
R.
,
2011
, “
Hydraulic Fracture Crossing Natural Fracture at Nonorthogonal Angles: A Criterion, Its Validation and Applications
,” SPE Hydraulic Fracture Technology Conference (
SPE HFTC
), The Woodlands, TX, Jan. 24–26, Paper No. SPE-139984-MS.
26.
Poltluri
,
N.
,
Zhu
,
D.
, and
Hill
,
A. D.
,
2005
, “
The Effect of Natural Fractures on Hydraulic Fracture Propagation
,”
SPE
European Formation Damage Conference
, Sheveningen, The Netherlands, May 25–27, Paper No. SPE 94568.
27.
Howard
,
G. C.
, and
Fast
,
C. R.
,
1970
,
Hydraulic Fracturing
(SPE Monograph Series, Vol. 2), Society of Petroleum Engineers, Richardson, TX.
28.
Perkins
,
T. K.
, and
Kern
,
L. R.
,
1961
, “
Widths of Hydraulic Fractures
,”
J. Pet. Technol.
,
13
(
9
), pp.
934
949
.
29.
Geertsma
,
J.
, and
de Klerk
,
F.
,
1969
, “
A Rapid Method of Predicting Width and Extent of Hydraulically Induced Fractures
,”
J. Pet. Technol.
,
21
(
12
), pp.
1571
1581
.
30.
Carter
,
R. D.
,
1957
, “
Derivation of the General Equation for Estimation the Extent of the Fracture Area
,”
Drilling and Production Practice
, G. C. Howard and C. R. Fast, eds.,
American Petroleum Institute
,
New York
, pp.
261
268
.
31.
Settari
,
A.
,
1985
, “
A New General Model of Fluid Loss in Hydraulic Fracturing
,”
SPE J.
,
25
(
4
), pp.
491
501
.
32.
Abousleiman
,
Y. N.
,
1991
, “
A Poroelastic PKN Model With Pressure Dependent Leakoff and Formation Permeability Determination
,” Ph.D. dissertation, University of Delaware, Newark, DE.
33.
Baree
,
R. D.
, and
Mukherjee
,
H.
,
1996
, “
Determination of Pressure Dependent Leakoff and Its Effect on Fracture
,”
SPE
Annual Technical Conference and Exhibition
, Denver, CO, Oct. 6–9, Paper No. SPE-36424-MS.
34.
Carslaw
,
H.
, and
Jaeger
,
J. C.
,
1956
,
Conduction of Heat in Solids
,
2nd ed.
,
Oxford University Press
,
Oxford, UK
.
35.
Fan
,
Y.
, and
Economides
,
M. J.
,
1995
, “
Fracture Dimensions in Frac & Pack Stimulation
,”
SPE J.
,
1
(
4
), p. SPE-30469-PA.
36.
Warren
,
J. E.
, and
Root
,
P. J.
,
1963
, “
The Behavior of Naturally Fractured Reservoirs
,”
SPE J.
,
3
(
3
), pp.
245
255
.
37.
Kazemi
,
H.
,
Merrill
,
L. S.
,
Porterfield
,
K. L.
, and
Zeman
,
P. R.
,
1976
, “
Numerical Simulation of Water-Oil Flow in Naturally Fracture Reservoirs
,”
SPE J.
,
16
(
6
), pp.
317
326
.
38.
Thomas
,
L. K.
,
Dixon
,
T. N.
, and
Pierson
,
R. G.
,
1983
, “
Fractured Reservoir Simulation
,”
SPE J.
,
23
(
1
), pp.
42
54
.
39.
Zhang
,
X.
,
Du
,
C.
,
Deimbacher
,
F.
,
Crick
,
M.
, and
Harikesavanallur
,
A.
,
2009
, “
Sensitivity Studies of Horizontal Wells With Hydraulic Fractures in Shale Gas Reservoirs
,”
International Petroleum Technology Conference
, Doha, Qatar, Dec. 7–9, Paper No. IPTC-13338-MS.
40.
Saidi
,
A. M.
,
1983
, “
Simulation of Naturally Fractured Reservoirs
,”
SPE Reservoir Simulation Symposium
, San Francisco, CA, Nov. 15–18, Paper No. SPE-12270-MS.
41.
Gilman
,
J. R.
,
1986
, “
An Efficient Finite-Difference Method for Simulating Phase Segregation in the Matrix Blocks in Double-Porosity Reservoirs
,”
SPE Reservoir Eng.
,
1
(
4
), p. SPE-12271-PA.
42.
Wu
,
Y.-S.
, and
Pruess
,
K.
,
1988
, “
A Multiple-Porosity Method for Simulation of Naturally Fractured Petroleum Reservoirs
,”
SPE Reservoir Eng.
,
3
(
1
), pp.
327
336
.
43.
Beckner
,
B. L.
,
Chan
,
H. M.
,
McDonald
,
A. E.
,
Wooten
,
S. O.
, and
Jones
,
T. A.
,
1991
, “
Simulating Naturally Fractured Reservoirs Using a Subdomain Method
,”
SPE Symposium on Reservoir Simulation
, Anaheim, CA, Feb. 17–20, Paper No. SPE-21241-MS.
44.
Lamb
,
H.
, ed.,
1932
,
Hydrodynamics
,
6th ed.
,
Dover Publications
,
New York
.
45.
England
,
A. H.
, and
Green
,
A. E.
,
1963
, “
Some Two-Dimensional Punch and Crack Problems in Classical Elasticity
,”
Math. Proc. Cambridge Philos. Soc.
,
59
(
2
), pp.
489
500
.
46.
Warpinski
,
N. R.
, and
Smith
,
M. B.
,
1989
, “
Rock Mechanics and Fracture Geometry
,”
Recent Advances in Hydraulic Fracturing
(Monograph Series),
J. L.
Gidley
, ed.,
SPE
,
Richardson, TX
.
47.
Sneddon
,
I. N.
,
1946
, “
The Distribution of Stress in the Neighbourhood of a Crack in an Elastic Solid
,”
Proc. R. Soc. London A
,
187
(
1009
), pp.
2229
2260
.
48.
Olson
,
J. E.
,
2004
, “
Predicting Fracture Swarms—The Influence of Subcritical Crack Growth and the Crack-Tip Process Zone on Joint Spacing in Rock
,”
The Initiation, Propagation, and Arrest of Joints and Other Fractures Geological Society Special Publication
, Vol.
231
,
T.
Engelder
, and
J. W.
Cosgrove
, eds.,
Geological Society of London
,
London
, pp.
73
87
.
49.
Pollard
,
D. D.
, and
Segall
,
P.
,
1987
, “
Theoretical Displacements and Stresses Near Fractures in Rock: With Applications to Faults, Joints, Veins, Dikes, and Solution Surfaces
,”
Fracture Mechanics of Rock
(Academy Press Geology Series),
B. K.
Atkinson
, ed.,
Elsevier
,
London
, pp.
277
349
.
50.
Hossain
,
M. M.
, and
Rahman
,
M. K.
,
2008
, “
Numerical Simulation of Complex Fracture Growth During Tight Reservoir Stimulation by Hydraulic Fracturing
,”
J. Pet. Sci. Eng.
,
60
(
2
), pp.
86
104
.
51.
Gidley
,
J. L.
,
Holditch
,
S. A.
,
Nierode
,
D. E.
, and
Veatch
,
R. W.
, Jr.
,
1989
,
Recent Advances in Hydraulic Fracturing
(SPE Monograph Series, Vol.
12
),
Society of Petroleum Engineers
,
Richardson, TX
.
52.
Valko
,
P.
, and
Economides
,
M. J.
,
1997
,
Hydraulic Fracture Mechanics
,
Wiley
,
New York
.
53.
Jacot
,
R. H.
,
Bazan
,
L. W.
, and
Meyer
,
B. R.
,
2010
, “
Technology Integration—A Methodology to Enhance Production and Maximize Economics in Horizontal Marcellus Shale Wells
,”
SPE
Annual Technical Conference and Exhibition
, Florence, Italy, Sept. 19–22, Paper No. SPE 135262-MS.
You do not currently have access to this content.