A three-dimensional, two-phase, dual-continuum hydraulic fracture (HF) propagation simulator was developed and implemented. This paper presents a detailed method for efficient and effective modeling of the fluid flow within fracture and matrix as well as fluid leakoff, fracture height growth, and the fracture network propagation. Both a method for solving the system of coupled equations, and a verification of the developed model are presented herein.
Issue Section:
Oil/Gas Reservoirs
References
1.
Ahn
, C. H.
, Chang
, O. C.
, Dilmore
, R.
, and Wang
, J. Y.
, 2014
, “A Hydraulic Fracture Network Propagation Model in Shale Gas Reservoirs: Parametric Studies to Enhance the Effectiveness of Stimulation
,” SPE Unconventional Resources Technology Conference
, Denver, CO, Aug. 25–27, Paper No. SPE 1922580-MS.2.
Cipolla
, C. L.
, Warpinski
, N. R.
, Mayerhofer
, M. J.
, and Lolon
, E. P.
, 2010
, “The Relationship Between Fracture Complexity, Reservoir Properties, and Fracture-Treatment Design
,” SPE Prod. Oper.
, 25
(4
), pp. 438
–452
.3.
Li
, M.
, and Lior
, N.
, 2015
, “Analysis of Hydraulic Fracturing and Reservoir Performance in Enhanced Geothermal Systems
,” ASME J. Energy Resour. Technol.
, 137
(4
), p. 041203
.4.
Lorenz
, J. C.
, and Warpinski
, N. R.
, 1996
, “Natural Fracture Characteristics and Effects
,” Leading Edge
, 15
(8
), pp. 909
–911
.5.
Osholake
, T.
, Wang
, J. Y.
, and Ertekin
, T.
, 2012
, “Factors Affecting Hydraulically Fractured Well Performance in the Marcellus Shale Gas Reservoirs
,” ASME J. Energy Resour. Technol.
, 135
(1
), p. 013402
.6.
Rahman
, M.
, and Rahman
, M.
, 2011
, “Optimizing Hydraulic Fracture to Manage Sand Production by Predicting Critical Drawdown Pressure in Gas Well
,” ASME J. Energy Resour. Technol.
, 134
(1
), p. 013101
.7.
Teufel
, L. W.
, and Clark
, J. A.
, 1984
, “Hydraulic Fracture Propagation in Layered Rock: Experimental Studies of Fracture Containment
,” SPE J.
, 24
(1
), pp. 19
–32
.8.
Blanton
, T. L.
, 1982
, “Experimental Study of Interaction Between Hydraulically Induced and Pre-Existing Fractures
,” SPE
Unconventional Gas Recovery Symposium
, Pittsburgh, PA, May 16–18, Paper No. SPE 10847.9.
Renshaw
, C. E.
, and Pollard
, D. D.
, 1998
, “An Experimetally Verified Criterion for Propagation Across Unbounded Frictional Interfaces in Brittle Linear Elastic Materials
,” Int. J. Rock Mech. Min. Sci. Geomech.
, 32
(3
), pp. 237
–249
.10.
Warpinski
, N. R.
, and Teufel
, L. W.
, 1987
, “Influence of Geologic Discontinuities on Hydrauli Fracture Propagation
,” J. Pet. Technol.
, 39
(2
), pp. 209
–220
.11.
Ahn
, C. H.
, Dilmore
, R.
, and Wang
, J. Y.
, 2014
, “Development of Innovative and Efficient Hydraulic Fracturing Numerical Simulation Model and Parametric Studies in Unconventional Naturally Fractured Reservoirs
,” J. Unconv. Oil Gas Resour.
, 8
, pp. 25
–45
.12.
Hofmann
, H.
, Babadagli
, T.
, and Zimmermann
, G.
, 2014
, “Numerical Simulation of Complex Fracture Network Development by Hydraulic Fracturing in Naturally Fractured Ultratight Formations
,” ASME J. Energy Resour. Technol.
, 136
(4
), p. 042905
.13.
Keshavarzi
, R.
, and Mohammadi
, S.
, 2012
, “A New Approach for Numerical Modeling of Hydraulic Fracture Propagation in Naturally Fractured Reservoirs
,” SPE/EAGE
European Unconventional Resources Conference & Exhibition—From Potential to Production, Vienna, Austria, Mar. 20–22, Paper No. SPE-152509-MS.14.
Meyer
, R. B.
, and Bazan
, L. W.
, 2011
, “A Discrete Fracture Network Model for Hydraulically Induced Fractures—Theory, Parametric and Case Studies
,” SPE
Hydraulic Fracturing Technology Conference
, The Woodlands, TX, Jan. 24–26, Paper No. SPE 140514.15.
Salehi
, S.
, and Nygaard
, R.
, 2014
, “Full Fluid–Solid Cohesive Finite-Element Model to Simulate Near Wellbore Fractures
,” ASME J. Energy Resour. Technol.
, 137
(1
), p. 012903
.16.
Taleghani
, A. D.
, and Olson
, J. E.
, 2011
, “Numerical Modeling of Multistranded-Hydraulic-Fracture Propagation: Accounting for the Interaction Between Induced and Natural Fractures
,” SPE J.
, 16
(3
), pp. 575
–581
.17.
Taleghani
, A. D.
, and Olson
, J. E.
, 2013
, “How Natural Fractures Could Affect Hydraulic-Fracture Geometry
,” SPE J.
, 19
(1
), pp. 161
–171
.18.
Weng
, X.
, Kresse
, O.
, Cohen
, C.
, Wu
, R.
, and Gu
, H.
, 2011
, “Modeling of Hydraulic Fracture Network Propagation in a Naturally Fractured Formation
,” SPE Prod. Oper.
, 26
(4
), pp. 368
–380
.19.
Jahromi
, M. Z.
, Wang
, J. Y.
, and Ertekin
, T.
, 2013
, “Development of a Three-Dimensional Three-Phase Fully Coupled Numerical Simulator for Modeling Hydraulic Fracture Propagation in Tight Gas Reservoirs
,” SPE Hydraulic Fracturing Technology Conference (SPE HFTC
), Woodlands, TX, Feb. 4–6, Paper No. SPE-163850-MS.20.
Zhang
, X.
, Jeffery
, R. G.
, and Thiercelin
, M.
, 2007
, “Deflection and Propagation of Fruid-Driven Fractures at Frictional Bedding Interfaces: A Numerical Investigation
,” J. Struct. Geol.
, 29
(3
), pp. 396
–410
.21.
Zhang
, X.
, Jeffery
, R. G.
, and Thiercelin
, M.
, 2007
, “Effects of Frictional Geological Discontinuities on Hydraulic Fracture Propagation
,” SPE Hydraulic Fracture Technology Conference
(SPE HFTC
), College Station, TX, Jan. 29–31, Paper No. SPE 106111.22.
Stoner
, M. A.
, 1969
, “Steady-State Analysis of Gas Production, Transmission and Distribution Systems
,” Fall Meeting of the
Society of Petroleum Engineers of AIME
, Denver, CO, Sept. 28–Oct. 1, Paper No. SPE 2554.23.
Zhang
, X.
, and Jeffery
, R. G.
, 2008
, “Reinitiation or Termination of Fluid Driven Fractures at Frictional Bedding Interfaces
,” J. Geophys. Res.
, 113
(B8
), p. B08416
.24.
Zhou
, D.
, Zheng
, P.
, Peng
, J.
, and He
, P.
, 2015
, “Induced Stress and Interaction of Fractures During Hydraulic Fracturing in Shale Formation
,” ASME J. Energy Resour. Technol.
, 137
(6
), p. 062902
.25.
Gu
, H.
, Weng
, X.
, Lund
, J. B.
, Mack
, M. G.
, Ganguly
, U.
, and Suarez-Rivera
, R.
, 2011
, “Hydraulic Fracture Crossing Natural Fracture at Nonorthogonal Angles: A Criterion, Its Validation and Applications
,” SPE Hydraulic Fracture Technology Conference (SPE HFTC
), The Woodlands, TX, Jan. 24–26, Paper No. SPE-139984-MS.26.
Poltluri
, N.
, Zhu
, D.
, and Hill
, A. D.
, 2005
, “The Effect of Natural Fractures on Hydraulic Fracture Propagation
,” SPE
European Formation Damage Conference
, Sheveningen, The Netherlands, May 25–27, Paper No. SPE 94568.27.
Howard
, G. C.
, and Fast
, C. R.
, 1970
, Hydraulic Fracturing
(SPE Monograph Series, Vol. 2), Society of Petroleum Engineers, Richardson, TX.28.
Perkins
, T. K.
, and Kern
, L. R.
, 1961
, “Widths of Hydraulic Fractures
,” J. Pet. Technol.
, 13
(9
), pp. 934
–949
.29.
Geertsma
, J.
, and de Klerk
, F.
, 1969
, “A Rapid Method of Predicting Width and Extent of Hydraulically Induced Fractures
,” J. Pet. Technol.
, 21
(12
), pp. 1571
–1581
.30.
Carter
, R. D.
, 1957
, “Derivation of the General Equation for Estimation the Extent of the Fracture Area
,” Drilling and Production Practice
, G. C. Howard and C. R. Fast, eds., American Petroleum Institute
, New York
, pp. 261
–268
.31.
Settari
, A.
, 1985
, “A New General Model of Fluid Loss in Hydraulic Fracturing
,” SPE J.
, 25
(4
), pp. 491
–501
.32.
Abousleiman
, Y. N.
, 1991
, “A Poroelastic PKN Model With Pressure Dependent Leakoff and Formation Permeability Determination
,” Ph.D. dissertation, University of Delaware, Newark, DE.33.
Baree
, R. D.
, and Mukherjee
, H.
, 1996
, “Determination of Pressure Dependent Leakoff and Its Effect on Fracture
,” SPE
Annual Technical Conference and Exhibition
, Denver, CO, Oct. 6–9, Paper No. SPE-36424-MS.34.
Carslaw
, H.
, and Jaeger
, J. C.
, 1956
, Conduction of Heat in Solids
, 2nd ed., Oxford University Press
, Oxford, UK
.35.
Fan
, Y.
, and Economides
, M. J.
, 1995
, “Fracture Dimensions in Frac & Pack Stimulation
,” SPE J.
, 1
(4
), p. SPE-30469-PA.36.
Warren
, J. E.
, and Root
, P. J.
, 1963
, “The Behavior of Naturally Fractured Reservoirs
,” SPE J.
, 3
(3
), pp. 245
–255
.37.
Kazemi
, H.
, Merrill
, L. S.
, Porterfield
, K. L.
, and Zeman
, P. R.
, 1976
, “Numerical Simulation of Water-Oil Flow in Naturally Fracture Reservoirs
,” SPE J.
, 16
(6
), pp. 317
–326
.38.
Thomas
, L. K.
, Dixon
, T. N.
, and Pierson
, R. G.
, 1983
, “Fractured Reservoir Simulation
,” SPE J.
, 23
(1
), pp. 42
–54
.39.
Zhang
, X.
, Du
, C.
, Deimbacher
, F.
, Crick
, M.
, and Harikesavanallur
, A.
, 2009
, “Sensitivity Studies of Horizontal Wells With Hydraulic Fractures in Shale Gas Reservoirs
,” International Petroleum Technology Conference
, Doha, Qatar, Dec. 7–9, Paper No. IPTC-13338-MS.40.
Saidi
, A. M.
, 1983
, “Simulation of Naturally Fractured Reservoirs
,” SPE Reservoir Simulation Symposium
, San Francisco, CA, Nov. 15–18, Paper No. SPE-12270-MS.41.
Gilman
, J. R.
, 1986
, “An Efficient Finite-Difference Method for Simulating Phase Segregation in the Matrix Blocks in Double-Porosity Reservoirs
,” SPE Reservoir Eng.
, 1
(4
), p. SPE-12271-PA.42.
Wu
, Y.-S.
, and Pruess
, K.
, 1988
, “A Multiple-Porosity Method for Simulation of Naturally Fractured Petroleum Reservoirs
,” SPE Reservoir Eng.
, 3
(1
), pp. 327
–336
.43.
Beckner
, B. L.
, Chan
, H. M.
, McDonald
, A. E.
, Wooten
, S. O.
, and Jones
, T. A.
, 1991
, “Simulating Naturally Fractured Reservoirs Using a Subdomain Method
,” SPE Symposium on Reservoir Simulation
, Anaheim, CA, Feb. 17–20, Paper No. SPE-21241-MS.44.
Lamb
, H.
, ed., 1932
, Hydrodynamics
, 6th ed., Dover Publications
, New York
.45.
England
, A. H.
, and Green
, A. E.
, 1963
, “Some Two-Dimensional Punch and Crack Problems in Classical Elasticity
,” Math. Proc. Cambridge Philos. Soc.
, 59
(2
), pp. 489
–500
.46.
Warpinski
, N. R.
, and Smith
, M. B.
, 1989
, “Rock Mechanics and Fracture Geometry
,” Recent Advances in Hydraulic Fracturing
(Monograph Series), J. L.
Gidley
, ed., SPE
, Richardson, TX
.47.
Sneddon
, I. N.
, 1946
, “The Distribution of Stress in the Neighbourhood of a Crack in an Elastic Solid
,” Proc. R. Soc. London A
, 187
(1009
), pp. 2229
–2260
.48.
Olson
, J. E.
, 2004
, “Predicting Fracture Swarms—The Influence of Subcritical Crack Growth and the Crack-Tip Process Zone on Joint Spacing in Rock
,” The Initiation, Propagation, and Arrest of Joints and Other Fractures Geological Society Special Publication
, Vol. 231
, T.
Engelder
, and J. W.
Cosgrove
, eds., Geological Society of London
, London
, pp. 73
–87
.49.
Pollard
, D. D.
, and Segall
, P.
, 1987
, “Theoretical Displacements and Stresses Near Fractures in Rock: With Applications to Faults, Joints, Veins, Dikes, and Solution Surfaces
,” Fracture Mechanics of Rock
(Academy Press Geology Series), B. K.
Atkinson
, ed., Elsevier
, London
, pp. 277
–349
.50.
Hossain
, M. M.
, and Rahman
, M. K.
, 2008
, “Numerical Simulation of Complex Fracture Growth During Tight Reservoir Stimulation by Hydraulic Fracturing
,” J. Pet. Sci. Eng.
, 60
(2
), pp. 86
–104
.51.
Gidley
, J. L.
, Holditch
, S. A.
, Nierode
, D. E.
, and Veatch
, R. W.
, Jr., 1989
, Recent Advances in Hydraulic Fracturing
(SPE Monograph Series, Vol. 12
), Society of Petroleum Engineers
, Richardson, TX
.52.
Valko
, P.
, and Economides
, M. J.
, 1997
, Hydraulic Fracture Mechanics
, Wiley
, New York
.53.
Jacot
, R. H.
, Bazan
, L. W.
, and Meyer
, B. R.
, 2010
, “Technology Integration—A Methodology to Enhance Production and Maximize Economics in Horizontal Marcellus Shale Wells
,” SPE
Annual Technical Conference and Exhibition
, Florence, Italy, Sept. 19–22, Paper No. SPE 135262-MS.Copyright © 2017 by ASME
You do not currently have access to this content.