Studies are performed in a constant volume preburn type combustion vessel over a range of ambient temperatures (750 K, 800 K, and 900 K) at constant density (22.8 kg/m3) with 15% O2 by volume in the ambient at 1200 bar (n-dodecane) fuel injection pressure. The influence of the pilot (first) spray flame on the ignition and combustion characteristics of the main (second) injection is investigated while varying injection pressure, dwell time, and injection strategy. Simultaneous schlieren (with soot luminosity imaging) and 355 nm planar laser-induced fluorescence (PLIF) imaging for formaldehyde (CH2O) and polycyclic aromatic hydrocarbons (PAH) visualization was performed. At both 900 K and 800 K ambient, main injection exhibits a reduction in ignition delay (ID) by a factor of 2 over their respective pilots. For the ambient temperature condition of 750 K, reducing injection pressure from 1500 bar to 1200 bar causes a significant increase in ignition delay (by ∼0.8 ms), which was attributed to the influence of injection pressure on spray-mixing and early development of cool flame. Also, at 750 K ambient condition, multiple injection schedule having two 0.5 ms injections separated by a 0.5 ms dwell was found to have a shorter ignition delay than a single 0.5 ms injection. Studies carried at an 800 K ambient show that by increasing the dwell time, main interaction with pilot reactive intermediates can be controlled to avoid an early rich ignition of the main spray and to reduce soot precursors.

References

References
1.
Chen
,
S. K.
,
2000
, “
Simultaneous Reduction of NOx and Particulate Emissions by Using Multiple Injections in a Small Diesel Engine
,”
SAE
Technical Paper No. 0148-7191.
2.
Dürnholz
,
M.
,
Endres
,
H.
, and
Frisse
,
P.
,
1994
, “
Preinjection a Measure to Optimize the Emission Behavior of DI-Diesel Engine
,”
SAE
Technical Paper No. 0148-7191.
3.
Imaoka
,
Y.
,
Shouji
,
K.
,
Inoue
,
T.
, and
Noda
,
T.
,
2015
, “
A Study of a Multistage Injection Mechanism for Improving the Combustion of Direct-Injection Gasoline Engines
,”
SAE Int. J. Engines
,
8
(
3
), pp.
1080
1087
.
4.
Martin
,
D.
,
Stratmann
,
J.
,
Pischke
,
P.
,
Kneer
,
R.
, and
Lai
,
M.-C.
,
2010
, “
Experimental Investigation of the Interaction of Multiple GDI Injections Using Laser Diagnostics
,”
SAE Int. J. Engines
,
3
(
1
), pp.
372
388
.
5.
Mendez
,
S.
, and
Thirouard
,
B.
,
2009
, “
Using Multiple Injection Strategies in Diesel Combustion: Potential to Improve Emissions, Noise and Fuel Economy Trade-Off in Low CR Engines
,”
SAE Int. J. Fuels Lubr.
,
1
(
1
), pp.
662
674
.
6.
O'Connor
,
J.
, and
Musculus
,
M.
,
2013
, “
Optical Investigation of the Reduction of Unburned Hydrocarbons Using Close-Coupled Post Injections at LTC Conditions in a Heavy-Duty Diesel Engine
,”
SAE Int. J. Engines
,
6
(
1
), pp.
379
399
.
7.
O'Connor
,
J.
, and
Musculus
,
M.
,
2013
, “
Post Injections for Soot Reduction in Diesel Engines: A Review of Current Understanding
,”
SAE Int. J. Engines
,
6
(
1
), pp.
400
421
.
8.
O'Connor
,
J.
, and
Musculus
,
M.
,
2014
, “
In-Cylinder Mechanisms of Soot Reduction by Close-Coupled Post-Injections as Revealed by Imaging of Soot Luminosity and Planar Laser-Induced Soot Incandescence in a Heavy-Duty Diesel Engine
,”
SAE Int. J. Engines
,
7
(
2
), pp.
673
693
.
9.
Tow
,
T.
,
Pierpont
,
D.
, and
Reitz
,
R. D.
,
1994
, “
Reducing Particulate and NOx Emissions by Using Multiple Injections in a Heavy Duty DI Diesel Engine
,”
SAE
Technical Paper No. 0148-7191.
10.
Yousefi
,
A.
, and
Birouk
,
M.
,
2016
, “
An Investigation of Multi-Injection Strategies for a Dual-Fuel Pilot Diesel Ignition Engine at Low Load
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
012201
.
11.
Said
,
A. O.
,
Khalil
,
A. E.
, and
Gupta
,
A. K.
,
2016
, “
Dual-Location Fuel Injection Effects on Emissions and NO*/OH* Chemiluminescence in a High Intensity Combustor
,”
ASME J. Energy Resour. Technol.
,
138
(
4
), p.
042208
.
12.
Khalil
,
A. E.
, and
Gupta
,
A. K.
,
2014
, “
Dual Injection Distributed Combustion for Gas Turbine Application
,”
ASME J. Energy Resour. Technol.
,
136
(
1
), p.
011601
.
13.
Ehleskog
,
R.
,
Ochoterena
,
R. L.
, and
Andersson
,
S.
,
2007
, “
Effects of Multiple Injections on Engine-Out Emission Levels Including Particulate Mass From an HSDI Diesel Engine
,”
SAE
Technical Paper No. 0148-7191.
14.
Lee
,
J.
,
Hong
,
K.
,
Choi
,
S.
,
Yu
,
S.
,
Choi
,
H.
, and
Min
,
K.
,
2013
, “
Comparison of the Effects of Multiple Injection Strategy on the Emissions Between Moderate and Heavy EGR Rate Conditions—Part 1: Pilot Injections
,”
J. Mech. Sci. Technol.
,
27
(
4
), pp.
1135
1141
.
15.
Bruneaux
,
G.
, and
Maligne
,
D.
,
2009
, “
Study of the Mixing and Combustion Processes of Consecutive Short Double Diesel Injections
,”
SAE Int. J. Engines
,
2
(
1
), pp.
1151
1169
.
16.
Pickett
,
L. M.
,
Kook
,
S.
, and
Williams
,
T. C.
,
2009
, “
Transient Liquid Penetration of Early-Injection Diesel Sprays
,”
SAE Int. J. Engines
,
2
(
1
), pp.
785
804
.
17.
Skeen
,
S.
,
Manin
,
J.
, and
Pickett
,
L. M.
,
2015
, “
Visualization of Ignition Processes in High-Pressure Sprays With Multiple Injections of n-Dodecane
,”
SAE Int. J. Engines
,
8
(
2
), pp.
696
715
.
18.
Cung
,
K.
,
Moiz
,
A.
,
Johnson
,
J.
,
Lee
,
S.-Y.
,
Kweon
,
C.-B.
, and
Montanaro
,
A.
,
2015
, “
Spray–Combustion Interaction Mechanism of Multiple-Injection Under Diesel Engine Conditions
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3061
3068
.
19.
Pickett
,
L. M.
,
Kook
,
S.
, and
Williams
,
T. C.
,
2009
, “
Visualization of Diesel Spray Penetration, Cool-Flame, Ignition, High-Temperature Combustion, and Soot Formation Using High-Speed Imaging
,”
SAE Int. J. Engines
,
2
(
1
), pp.
439
459
.
20.
Naber
,
J. D.
, and
Siebers
,
D. L.
,
1996
, “
Effects of Gas Density and Vaporization on Penetration and Dispersion of Diesel Sprays
,”
SAE
Technical Paper 960034.
21.
Espey
,
C.
,
Dec
,
J. E.
,
Litzinger
,
T. A.
, and
Santavicca
,
D. A.
,
1997
, “
Planar Laser Rayleigh Scattering for Quantitative Vapor-Fuel Imaging in a Diesel Jet
,”
Combust. Flame
,
109
(
1
), pp.
65
86
.
22.
Higgins
,
B.
,
Siebers
,
D. L.
, and
Aradi
,
A.
,
2000
, “
Diesel-Spray Ignition and Premixed-Burn Behavior
,”
SAE
Technical Paper No. 0148-7191.
23.
Siebers
,
D. L.
, and
Higgins
,
B.
,
2001
, “
Flame Lift-Off on Direct-Injection Diesel Sprays Under Quiescent Conditions
,”
SAE
Technical Paper No. 0148-7191.
24.
Skeen
,
S. A.
,
Manin
,
J.
, and
Pickett
,
L. M.
,
2015
, “
Simultaneous Formaldehyde PLIF and High-Speed Schlieren Imaging for Ignition Visualization in High-Pressure Spray Flames
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3167
3174
.
25.
Musculus
,
M. P.
, and
Pickett
,
L. M.
,
2005
, “
Diagnostic Considerations for Optical Laser-Extinction Measurements of Soot in High-Pressure Transient Combustion Environments
,”
Combust. Flame
,
141
(
4
), pp.
371
391
.
26.
Meijer
,
M.
,
Somers
,
B.
,
Johnson
,
J.
,
Naber
,
J.
,
Lee
,
S.-Y.
,
Malbec
,
L. M.
,
Bruneaux
,
G.
,
Pickett
,
L. M.
,
Bardi
,
M.
, and
Payri
,
R.
,
2012
, “
Engine Combustion Network (ECN): Characterization and Comparison of Boundary Conditions for Different Combustion Vessels
,”
Atomization Sprays
,
22
(
9
), pp.
777
806
.
27.
Nesbitt
,
J. E.
,
Johnson
,
S. E.
,
Pickett
,
L. M.
,
Siebers
,
D. L.
,
Lee
,
S.-Y.
, and
Naber
,
J. D.
,
2011
, “
Minor Species Production From Lean Premixed Combustion and Their Impact on Autoignition of Diesel Surrogates
,”
Energy Fuels
,
25
(
3
), pp.
926
936
.
28.
Juli
,
J.
,
2002
, “
Planar Laser-Induced Fluorescence Fuel Concentration Measurements in Isothermal Diesel Sprays
,”
Opt. Express
,
10
(
7
), pp.
309
323
.
29.
Lachaux
,
T.
, and
Musculus
,
M. P.
,
2007
, “
In-Cylinder Unburned Hydrocarbon Visualization During Low-Temperature Compression-Ignition Engine Combustion Using Formaldehyde PLIF
,”
Proc. Combust. Inst.
,
31
(
2
), pp.
2921
2929
.
30.
Bruneaux
,
G.
,
2008
, “
Combustion Structure of Free and Wall-Impinging Diesel Jets by Simultaneous Laser-Induced Fluorescence of Formaldehyde, Poly-Aromatic Hydrocarbons, and Hydroxides
,”
Int. J. Engine Res.
,
9
(
3
), pp.
249
265
.
31.
Heywood
,
J. B.
,
1988
,
Internal Combustion Engine Fundamentals
,
McGraw-Hill
,
New York
.
32.
Knox
,
B. W.
, and
Genzale
,
C. L.
,
2015
, “
Reduced-Order Numerical Model for Transient Reacting Diesel Sprays With Detailed Kinetics
,”
Int. J. Engine Res.
,
17
(
3
), pp.
261
279
.
33.
Nesbitt
,
J. E.
,
Lee
,
S.-Y.
,
Naber
,
J. D.
, and
Arora
,
R.
,
2010
, “
An Optical Study of Spark Ignition and Flame Kernel Development Near the Lean Limit at Elevated Pressure
,”
ASME
Paper No. ICEF2010-35136.
34.
Felsch
,
C.
,
Gauding
,
M.
,
Hasse
,
C.
,
Vogel
,
S.
, and
Peters
,
N.
,
2009
, “
An Extended Flamelet Model for Multiple Injections in DI Diesel Engines
,”
Proc. Combust. Inst.
,
32
(
2
), pp.
2775
2783
.
You do not currently have access to this content.