To fundamentally elucidate the mixing and its effects on the characteristics of methane/oxygen flame in a rapidly mixed tubular flame burner, experiments were conducted under various oxygen mole fractions and flow rates. Two inert gases of nitrogen and carbon dioxide were used, respectively. The inert gas was added to both the oxidizer and fuel slits to maintain the oxidizer/fuel injection velocity ratio near unity. Based on flow visualization, the mixing process around injection slits and that in the axial downstream were discussed. The Damköhler number (Da1), defined as the ratio of molecular mixing time to reaction time, was selected as a parameter to quantitatively examine the criterion for the establishment of tubular flame from low to ultrahigh oxygen mole fractions (0.21–0.86). The mixing around slit exit determined the tubular flame establishment. Due to a flow time between two neighboring injection slits of fuel and oxidizer, part of the fuel was mixed in the downstream swirling flow, resulting in luminous helical structures. Hence, the Damköhler number (Da2), defined as the flow to the reaction time ratio, was examined. Detailed observations indicated that when Da2 was smaller than unity, the flame was uniform in luminosity, whereas the flame was nonuniform when Da2 ≥ 1. The value of Da2 was about 1.5 times as Da1; however, they correspond to different mixing zones and Da2 can be more easily calculated. The differences in flame stability between N2 and CO2 diluted combustion were also studied.

References

References
1.
Baukal
,
C. E.
,
1998
,
Oxygen-Enhanced Combustion
,
CRC Press
,
Boca Raton, FL
.
2.
Koytsoumpa
,
E. I.
,
Bergins
,
C.
,
Buddenberg
,
T.
,
Wu
,
S.
,
Sigurbjörnsson
,
Ó.
,
Tran
,
K.
, and
Kakaras
,
E.
,
2016
, “
The Challenge of Energy Storage in Europe: Focus on Power to Fuel
,”
ASME J. Energy Resour. Technol.
,
138
(
4
), p.
042002
.
3.
Said
,
A. O.
, and
Gupta
,
A. K.
,
2015
, “
Oxygen Enriched Air Effects on Combustion, Emission, and Distributed Reaction
,”
ASME J. Energy Resour. Technol.
,
137
(
4
), p.
042203
.
4.
Riley
,
M. F.
,
2000
, “
Dilute Oxygen Combustion—Phase III Report
,” Department of Energy, Washington, DC, Report No. DOE/ID/1331-T2.
5.
Chen
,
L.
, and
Battaglia
,
F.
,
2015
, “
The Effects of Fuel and Air Mixtures in Non-Premixed Combustion for a Bluff-Body Flame
,”
ASME
Paper No. AJKFluids2015-34718.
6.
Merlo
,
N.
,
Boushaki
,
T.
,
Chauveau
,
C.
,
De Persis
,
S.
,
Pillier
,
L.
,
Sarh
,
B.
, and
Gökalp
,
I.
,
2013
, “
Combustion characteristics of methane–oxygen enhanced air turbulent non-premixed swirling flames
,”
Exp. Therm. Fluid Sci.
,
56
, pp.
53
60
.
7.
Zhen
,
H. S.
,
Leung
,
C. W.
, and
Cheung
,
C. S.
,
2011
, “
Combustion Characteristics of a Swirling Inverse Diffusion Flame Upon Oxygen Content Variation
,”
Appl. Energy
,
88
(
9
), pp.
2925
2933
.
8.
Sánchez
,
M.
,
Cadavid
,
F.
, and
Amell
,
A.
,
2013
, “
Experimental Evaluation of a 20 kW Oxygen Enhanced Self-Regenerative Burner Operated in Flameless Combustion Mode
,”
Appl. Energy
,
111
, pp.
240
246
.
9.
Masimalai
,
S.
, and
Nandagopal
,
S.
,
2016
, “
Combined Effect of Oxygen Enrichment and Dual Fueling on the Performance Behavior of a CI Engine Fueled With Pyro Oil–Diesel Blend as Fuel
,”
ASME J. Energy Resour. Technol.
,
138
(
3
), p.
032206
.
10.
Habermehl
,
M.
,
Kneer
,
R.
,
Hees
,
J.
,
Maßmeyer
,
A.
,
Zabrodiec
,
D.
, and
Hatzfeld
,
O.
,
2016
, “
Comparison of Flame Stability Under Air and Oxy-Fuel Conditions for an Aerodynamically Stabilized Pulverized Coal Swirl Flame
,”
ASME J. Energy Resour. Technol.
,
138
(
4
), p.
042209
.
11.
Fujimori
,
T.
, and
Yamada
,
T.
,
2013
, “
Realization of Oxyfuel Combustion for Near Zero Emission Power Generation
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
2111
2130
.
12.
Toftegaard
,
M. B.
,
Brix
,
J.
,
Jensen
,
P. A.
,
Glarborg
,
P.
, and
Jensen
,
A. D.
,
2010
, “
Oxy-Fuel Combustion of Solid Fuels
,”
Prog. Energy Combust. Sci.
,
36
(
5
), pp.
581
625
.
13.
Amato
,
A.
,
Hudak
,
B.
,
Souza
,
P. D.
,
Carlo
,
P. D.
,
Noble
,
D.
,
Scarborough
,
D.
,
Seitzman
,
J.
, and
Lieuwen
,
T.
,
2011
, “
Measurements and Analysis of CO and O2 Emissions in CH4/CO2/O2 Flames
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
3399
3405
.
14.
Heil
,
P.
,
Toporov
,
D.
,
Förster
,
M.
, and
Kneer
,
R.
,
2011
, “
Experimental Investigation on the Effect of O2 and CO2 on Burning Rates During Oxyfuel Combustion of Methane
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
3407
3413
.
15.
Almansour
,
B.
,
Thompson
,
L.
,
Lopez
,
J.
,
Barari
,
G.
, and
Vasu
,
S. S.
,
2015
, “
Laser Ignition and Flame Speed Measurements in Oxy-Methane Mixtures Diluted With CO2
,”
ASME J. Energy Resour. Technol.
,
138
(
3
), p.
032201
.
16.
Ishizuka
,
S.
,
Motodamari
,
T.
, and
Shimokuri
,
D.
,
2007
, “
Rapidly Mixed Combustion in a Tubular Flame Burner
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
1085
1092
.
17.
Ishizuka
,
S.
,
1993
, “
Characteristics of Tubular Flames
,”
Prog. Energy Combust. Sci.
,
19
(
3
), pp.
187
226
.
18.
Ishizuka
,
S.
,
Derek
,
D.-R.
,
Pitz
,
R. W.
,
Kee
,
R. J.
,
Zhang
,
Y.
,
Takeno
,
T.
, and
Shimokuri
,
D.
,
2013
,
Tubular Combustion
,
Momentum Press
,
New York
.
19.
Zhang
,
Y.
,
Xiong
,
G.
,
Li
,
S.
,
Dong
,
Z.
,
Buckley
,
S. G.
, and
Tse
,
S. D.
,
2013
, “
Novel Low-Intensity Phase-Selective Laser-Induced Breakdown Spectroscopy of TiO2 Nanoparticle Aerosols During Flame Synthesis
,”
Combust. Flame
,
160
(
3
), pp.
725
733
.
20.
Zhang
,
Y.
,
Li
,
S.
,
Yan
,
W.
, and
Yao
,
Q.
,
2012
, “
Nanoparticle Transport and Deposition in Boundary Layer of Stagnation-Point Premixed Flames
,”
Powder Technol.
,
227
, pp.
24
34
.
21.
Zong
,
Y.
,
Li
,
S.
,
Niu
,
F.
, and
Yao
,
Q.
,
2015
, “
Direct Synthesis of Supported Palladium Catalysts for Methane Combustion by Stagnation Swirl Flame
,”
Proc. Combust. Inst.
,
35
(
2
), pp.
2249
2257
.
22.
Yılmaz
,
İ.
,
2013
, “
Effect of Swirl Number on Combustion Characteristics in a Natural Gas Diffusion Flame
,”
ASME J. Energy Resour. Technol.
,
135
(
4
), pp.
1240
1250
.
23.
Ishizuka
,
S.
,
Hagiwara
,
R.
,
Suzuki
,
M.
,
Nakamura
,
A.
, and
Hamaguchi
,
O.
,
1999
, “
Combustion Characteristics of a Tubular Flame Burner
,”
Trans. Jpn. Soc. Mech. Eng.
,
65
, pp.
3226
3232
.
24.
Shi
,
B.
,
Hu
,
J.
, and
Ishizuka
,
S.
,
2015
, “
Carbon Dioxide Diluted Methane/oxygen Combustion in a Rapidly Mixed Tubular Flame Burner
,”
Combust. Flame
,
162
(
2
), pp.
420
430
.
25.
Shi
,
B.
,
Shimokuri
,
D.
, and
Ishizuka
,
S.
,
2013
, “
Methane/Oxygen Combustion in a Rapidly Mixed Type Tubular Flame Burner
,”
Proc. Combust. Inst.
,
34
(
2
), pp.
3369
3377
.
26.
Shi
,
B.
,
Shimokuri
,
D.
, and
Ishizuka
,
S.
,
2014
, “
Reexamination on Methane/Oxygen Combustion in a Rapidly Mixed Type Tubular Flame Burner
,”
Combust. Flame
,
161
(
5
), pp.
1310
1325
.
27.
Reaction Design
,
2013
, “
chemkin-pro Release 15083
,” Reaction Design, San Diego, CA, http://www.reactiondesign.com/
28.
Shi
,
B.
,
Hu
,
J.
,
Peng
,
H.
, and
Ishizuka
,
S.
,
2014
, “
Flow Visualization and Mixing in a Rapidly Mixed Type Tubular Flame Burner
,”
Exp. Therm. Fluid Sci.
,
54
(
2
), pp.
1
11
.
29.
Schlichting
,
H.
, and
Gersten
,
K.
,
1955
,
Boundary-Layer Theory
,
McGraw-Hill
,
New York
.
30.
Shimokuri
,
D.
,
Zhang
,
Y.
, and
Ishizuka
,
S.
,
2007
, “
PIV Measurements on a 2-inch Tubular Flame Burner
,”
6th Asia Pacific Conference on Combustion
, Nagoya, Japan, May 20–23, pp.
154
157
.
31.
Frenklach
,
M.
,
Wang
,
H.
,
Goldenberg
,
M.
,
Smith
,
G. P.
,
Golden
,
D. M.
,
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Gardiner
,
W. C.
,
Lissianski
,
V.
, and
Frenklach
,
M.
,
1995
, “
An Optimized Detailed Chemical Reaction Mechanism for Methane Combustion
,” GRI-Mech, Berkeley, CA, Report No. GRI-95/0058.
32.
Poinsot
,
T.
, and
Veynante
,
D.
,
2005
,
Theoretical and Numerical Combustion
,
R.T. Edwards
,
Philadelphia, PA
.
33.
Jahn
,
G.
,
1934
,
Der zündvorgang in Gasgemischen
,
R. Oldenbourg
,
Berlin
.
34.
Zhu
,
D. L.
,
Egolfopoulos
,
F. N.
, and
Law
,
C. K.
,
1989
, “
Experimental and Numerical Determination of Laminar Flame Speeds of Methane/(Ar, N2, CO2)-Air Mixtures as Function of Stoichiometry, Pressure, and Flame Temperature
,”
Symp. Combust.
,
22
(
1
), pp.
1537
1545
.
35.
Miller
,
J. A.
, and
Bowman
,
C. T.
,
1989
, “
Mechanism and Modeling of Nitrogen Chemistry in Combustion
,”
Prog. Energy Combust. Sci.
,
15
(
4
), pp.
287
338
.
36.
Liu
,
F.
,
Guo
,
H.
, and
Smallwood
,
G. J.
,
2003
, “
The Chemical Effect of CO2 Replacement of N2 in Air on the Burning Velocity of CH4 and H2 Premixed Flames
,”
Combust. Flame
,
133
(
4
), pp.
495
497
.
37.
Pitz
,
R. W.
,
Hu
,
S.
, and
Wang
,
P.
,
2014
, “
Tubular Premixed and Diffusion Flames: Effect of Stretch and Curvature
,”
Prog. Energy Combust. Sci.
,
42
(
2
), pp.
1
34
.
38.
Yu
,
J. F.
,
Yu
,
R.
,
Fan
,
X. Q.
,
Christensen
,
M.
,
Konnov
,
A. A.
, and
Bai
,
X. S.
,
2013
, “
Onset of Cellular Flame Instability in Adiabatic CH4/O2/CO2 and CH4/Air Laminar Premixed Flames Stabilized on a Flat-Flame Burner
,”
Combust. Flame
,
160
(
7
), pp.
1276
1286
.
39.
Jin
,
W.
,
Wang
,
J.
,
Yu
,
S.
,
Nie
,
Y.
,
Xie
,
Y.
, and
Huang
,
Z.
,
2015
, “
Cellular Instabilities of Non-Adiabatic Laminar Flat Methane/Hydrogen Oxy-Fuel Flames Highly Diluted With CO2
,”
Fuel
,
143
, pp.
38
46
.
40.
Shimokuri
,
D.
,
Karatsu
,
Y.
, and
Ishizuka
,
S.
,
2013
, “
Effects of Inert Gases on the Vortex Bursting in Small Diameter Tubes
,”
Proc. Combust. Inst.
,
34
(
34
), pp.
3403
3410
.
You do not currently have access to this content.