Aldehydes are major intermediates in oxidation and pyrolysis of hydrocarbons and particularly biofuels. While the high temperature oxidation chemistry of C3–C5 aldehydes have been studied in the literature, a comprehensive low temperature kinetics remains unaddressed. In this work, acetaldehyde, propanal, and 2-propenal (acrolein) oxidation was investigated at low-temperature combustion condition (500–700 K). The isomer-specific product concentrations as well as the time-resolved profiles were studied using Sandia's multiplexed photoionization mass spectroscopy (MPIMS) with synchrotron radiation from the advanced light source (ALS). The laser-pulsed photolysis generates chlorine atoms which react with aldehydes to form the parent radicals. In the presence of excess oxygen, these radicals react with O2 and form RO2 radicals. The temperature-dependent product yields are determined for 500 K to 700 K and the competition between the channels contributing to the formation of each product is discussed. In acetaldehyde oxidation, the formation of the main products is associated with HO2 elimination channel from QOOH or direct H atom elimination from the parent radicals. In propanal oxidation, the most intensive signal peak was associated with acetaldehyde (m/z = 44) which was formed through the reaction of α′-R with O2.The α′-RO2 intermediate decomposes to acetaldehyde+OH+CO via Waddington mechanism and formation of five-member ring transition state. In 2-propenal oxidation, the unsaturated radical produced from α-R reacts with O2 to form the primary products.

References

References
1.
Ranzi
,
E.
,
Corbetta
,
M.
,
Manenti
,
F.
, and
Pierucci
,
S.
,
2014
, “
Kinetic Modeling of the Thermal Degradation and Combustion of Biomass
,”
Chem. Eng. Sci.
,
110
, pp.
2
12
.
2.
Barari
,
G.
,
Vasu
,
S.
, and
Sarathy
,
M.
,
2015
, “
Improved Combustion Kinetic Model and HCCI Engine Simulations of Di-Isopropyl Ketone Ignition
,”
Fuel
,
164
, pp.
141
150
.
3.
Barari
,
G.
,
Koroglu
,
B.
,
Vasu
,
S.
,
Dec
,
J.
, and
Taatjes
,
C.
,
2013
, “
HCCI Engine Modeling of Diisopropyl Ketone, a Prototypical Biofuel
,”
Eastern States Section of the Combustion Institute (ESS/CI) Fall Technical Meeting
, Clemson, SC, Oct. 13–16.
4.
Soloiu
,
V.
,
Duggan
,
M.
,
Ochieng
,
H.
,
Williams
,
D.
,
Molina
,
G.
, and
Vlcek
,
B.
,
2013
, “
Investigation of Low Temperature Combustion Regimes of Biodiesel With N-Butanol Injected in the Intake Manifold of a Compression Ignition Engine
,”
ASME J. Energy Resour. Technol.
,
135
(
4
), p.
041101
.
5.
Yilmaz
,
N.
, and
Donaldson
,
A. B.
,
2007
, “
Modeling of Chemical Processes in a Diesel Engine With Alcohol Fuels
,”
ASME J. Energy Resour. Technol.
,
129
(
4
), pp.
355
359
.
6.
Kumar Maurya
,
R.
, and
Kumar Agarwal
,
A.
,
2014
, “
Combustion and Emission Characterization of n-Butanol Fueled HCCI Engine
,”
ASME J. Energy Resour. Technol.
,
137
(
1
), p.
011101
.
7.
Maurya
,
R. K.
, and
Agarwal
,
A. K.
,
2014
, “
Experimental Investigations of Particulate Size and Number Distribution in an Ethanol and Methanol Fueled HCCI Engine
,”
ASME J. Energy Resour. Technol.
,
137
(
1
), p.
012201
.
8.
Sarathy
,
S. M.
,
Vranckx
,
S.
,
Yasunaga
,
K.
,
Mehl
,
M.
,
Oßwald
,
P.
,
Metcalfe
,
W. K.
,
Westbrook
,
C. K.
,
Pitz
,
W. J.
,
Kohse-Höinghaus
,
K.
,
Fernandes
,
R. X.
, and
Curran
,
H. J.
,
2012
, “
A Comprehensive Chemical Kinetic Combustion Model for the Four Butanol Isomers
,”
Combust. Flame
,
159
(
6
), pp.
2028
2055
.
9.
Mani Sarathy
,
S.
,
Park
,
S.
,
Weber
,
B. W.
,
Wang
,
W.
,
Veloo
,
P. S.
,
Davis
,
A. C.
,
Togbe
,
C.
,
Westbrook
,
C. K.
,
Park
,
O.
,
Dayma
,
G.
,
Luo
,
Z.
,
Oehlschlaeger
,
M. A.
,
Egolfopoulos
,
F. N.
,
Lu
,
T.
,
Pitz
,
W. J.
,
Sung
,
C.-J.
, and
Dagaut
,
P.
,
2013
, “
A Comprehensive Experimental and Modeling Study of Iso-Pentanol Combustion
,”
Combust. Flame
,
160
(
12
), pp.
2712
2728
.
10.
Vasu
,
S. S.
, and
Sarathy
,
S. M.
,
2013
, “
On the High-Temperature Combustion of n-Butanol: Shock Tube Data and an Improved Kinetic Model
,”
Energy Fuels
,
27
(
11
), pp.
7072
7080
.
11.
Heufer
,
K. A.
,
Sarathy
,
S. M.
,
Curran
,
H. J.
,
Davis
,
A. C.
,
Westbrook
,
C. K.
, and
Pitz
,
W. J.
,
2012
, “
Detailed Kinetic Modeling Study of n-Pentanol Oxidation
,”
Energy Fuels
,
26
(
11
), pp.
6678
6685
.
12.
Pelucchi
,
M.
,
Somers
,
K. P.
,
Yasunaga
,
K.
,
Burke
,
U.
,
Frassoldati
,
A.
,
Ranzi
,
E.
,
Curran
,
H. J.
, and
Faravelli
,
T.
,
2015
, “
An Experimental and Kinetic Modeling Study of the Pyrolysis and Oxidation of n-C3C5 Aldehydes in Shock Tubes
,”
Combust. Flame
,
162
(
2
), pp.
265
286
.
13.
Ginnebaugh
,
D. L.
,
Liang
,
J.
, and
Jacobson
,
M. Z.
,
2010
, “
Examining the Temperature Dependence of Ethanol (E85) Versus Gasoline Emissions on Air Pollution With a Largely-Explicit Chemical Mechanism
,”
Atmos. Environ.
,
44
(
9
), pp.
1192
1199
.
14.
Jacobson
,
M. Z.
,
2007
, “
Effects of Ethanol (E85) Versus Gasoline Vehicles on Cancer and Mortality in the United States
,”
Environ. Sci. Technol.
,
41
(
11
), pp.
4150
4157
.
15.
Jacobson
,
M. Z.
,
2009
, “
Effects of Biofuels vs. Other New Vehicle Technologies on Air Pollution, Global Warming, Land Use and Water
,”
Int. J. Biotechnol.
,
11
(
1–2
), pp.
14
59
.
16.
Nicolas
,
G.
, and
Metghalchi
,
H.
,
2015
, “
Development of the Rate-Controlled Constrained-Equilibrium Method for Modeling of Ethanol Combustion
,”
ASME J. Energy Resour. Technol.
,
138
(
2
), p.
022205
.
17.
Eiteneer
,
B.
,
Yu
,
C. L.
,
Goldenberg
,
M.
, and
Frenklach
,
M.
,
1998
, “
Determination of Rate Coefficients for Reactions of Formaldehyde Pyrolysis and Oxidation in the Gas Phase
,”
J. Phys. Chem. A
,
102
(
27
), pp.
5196
5205
.
18.
Hidaka
,
Y.
,
Taniguchi
,
T.
,
Tanaka
,
H.
,
Kamesawa
,
T.
,
Inami
,
K.
, and
Kawano
,
H.
,
1993
, “
Shock-Tube Study of CH2O Pyrolysis and Oxidation
,”
Combust. Flame
,
92
(
4
), pp.
365
376
.
19.
Hidaka
,
Y.
,
Taniguchi
,
T.
,
Kamesawa
,
T.
,
Masaoka
,
H.
,
Inami
,
K.
, and
Kawano
,
H.
,
1993
, “
High Temperature Pyrolysis of Formaldehyde in Shock Waves
,”
Int. J. Chem. Kinet.
,
25
(
4
), pp.
305
322
.
20.
Dean
,
A. M.
,
Johnson
,
R. L.
, and
Steiner
,
D. C.
,
1980
, “
Shock-Tube Studies of Formaldehyde Oxidation
,”
Combust. Flame
,
37
, pp.
41
62
.
21.
Li
,
J.
,
Zhao
,
Z.
,
Kazakov
,
A.
,
Chaos
,
M.
,
Dryer
,
F. L.
, and
Scire
,
J. J.
,
2007
, “
A Comprehensive Kinetic Mechanism for CO, CH2O, and CH3OH Combustion
,”
Int. J. Chem. Kinet.
,
39
(
3
), pp.
109
136
.
22.
Dagaut
,
P.
,
Reuillon
,
M.
,
Voisin
,
D.
,
Cathonnet
,
M.
,
McGuinness
,
M.
, and
Simmie
,
J. M.
,
1995
, “
Acetaldehyde Oxidation in a JSR and Ignition in Shock Waves: Experimental and Comprehensive Kinetic Modeling
,”
Combust. Sci. Technol.
,
107
(
4–6
), pp.
301
316
.
23.
Yasunaga
,
K.
,
Kubo
,
S.
,
Hoshikawa
,
H.
,
Kamesawa
,
T.
, and
Hidaka
,
Y.
,
2008
, “
Shock-Tube and Modeling Study of Acetaldehyde Pyrolysis and Oxidation
,”
Int. J. Chem. Kinet.
,
40
(
2
), pp.
73
102
.
24.
Wang
,
S.
,
Davidson
,
D. F.
, and
Hanson
,
R. K.
,
2014
, “
High Temperature Measurements for the Rate Constants of C1–C4 Aldehydes With OH in a Shock Tube
,”
Proc. Combust. Inst.
,
35
(
1
), pp.
473
480
.
25.
Lifshitz
,
A.
,
Tamburu
,
C.
, and
Suslensky
,
A.
,
1990
, “
Decomposition of Propanal at Elevated Temperatures: Experimental and Modeling Study
,”
J. Phys. Chem., Kinet.
,
94
(
7
), pp.
2966
2972
.
26.
Veloo
,
P. S.
,
Dagaut
,
P.
,
Togbe
,
C.
,
Dayma
,
G.
,
Sarathy
,
S. M.
,
Westbrook
,
C. K.
, and
Egolfopoulos
,
F. N.
,
2013
, “
Jet-Stirred Reactor and Flame Studies of Propanal Oxidation
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
599
606
.
27.
Kaiser
,
E. W.
,
1983
, “
A Mass-Spectrometric Study of Propionaldehyde Oxidation in the Negative Temperature Coefficient Region
,”
Int. J. Chem. Kinet.
,
15
(
10
), pp.
997
1012
.
28.
Thévenet
,
R.
,
Mellouki
,
A.
, and
Le Bras
,
G.
,
2000
, “
Kinetics of OH and Cl Reactions With a Series of Aldehydes
,”
Int. J. Chem. Kinet.
,
32
(
11
), pp.
676
685
.
29.
Chatelain
,
K.
,
Mével
,
R.
,
Menon
,
S.
,
Blanquart
,
G.
, and
Shepherd
,
J. E.
,
2014
, “
Ignition and Chemical Kinetics of Acrolein–Oxygen–Argon Mixtures Behind Reflected Shock Waves
,”
Fuel
,
135
, pp.
498
508
.
30.
Dóbé
,
S.
,
Khachatryan
,
L. A.
, and
Bérces
,
T.
,
1989
, “
Kinetics of Reactions of Hydroxyl Radicals With a Series of Aliphatic Aldehydes
,”
Ber. Bunsen. Phys. Chem.
,
93
(
8
), pp.
847
852
.
31.
Sivakumaran
,
V.
, and
Crowley
,
J. N.
,
2003
, “
Reaction Between OH and CH3CHO Part 2. Temperature Dependent Rate Coefficients (201-348 K)
,”
Phys. Chem. Chem. Phys.
,
5
(
1
), pp.
106
111
.
32.
Wang
,
S.
,
Davidson
,
D. F.
, and
Hanson
,
R. K.
,
2015
, “
High Temperature Measurements for the Rate Constants of C1–C4 Aldehydes With OH in a Shock Tube
,”
Proc. Combust. Inst.
,
35
(
1
), pp.
473
480
.
33.
Ji
,
Y.
,
Gao
,
Y.
,
Li
,
G.
, and
An
,
T.
,
2012
, “
Theoretical Study of the Reaction Mechanism and Kinetics of Low-Molecular-Weight Atmospheric Aldehydes (C1–C4) With NO2
,”
Atmos. Environ.
,
54
, pp.
288
295
.
34.
Almansour
,
B.
,
Thompson
,
L.
,
Lopez
,
J.
,
Barari
,
G.
, and
Vasu
,
S. S.
,
2016
, “
Laser Ignition and Flame Speed Measurements in Oxy-Methane Mixtures Diluted With CO2
,”
ASME J. Energy Resour. Technol.
,
138
(
3
), p.
032201
.
35.
Almansour
,
B.
,
Thompson
,
L.
,
Lopez
,
J.
,
Barari
,
G.
, and
Vasu
,
S. S.
, “
Ignition and Flame Propagation in Oxy-Methane Mixtures Diluted With CO2
,”
ASME
Paper No. GT2015-43355.
36.
Koroglu
,
B.
,
Pryor
,
O. M.
,
Lopez
,
J.
,
Nash
,
L.
, and
Vasu
,
S. S.
,
2016
, “
Shock Tube Ignition Delay Times and Methane Time-Histories Measurements During Excess CO2 Diluted Oxy-Methane Combustion
,”
Combust. Flame
,
164
, pp.
152
163
.
37.
Zádor
,
J.
,
Taatjes
,
C. A.
, and
Fernandes
,
R. X.
,
2011
, “
Kinetics of Elementary Reactions in Low-Temperature Autoignition Chemistry
,”
Prog. Energy Combust. Sci.
,
37
(
4
), pp.
371
421
.
38.
Miller
,
J. A.
,
Pilling
,
M. J.
, and
Troe
,
J.
,
2005
,
Proc. Combust. Inst.
,
30
(
1
), p.
43
.
39.
Vranckx
,
S.
,
Heufer
,
K. A.
,
Lee
,
C.
,
Olivier
,
H.
,
Schill
,
L.
,
Kopp
,
W. A.
,
Leonhard
,
K.
,
Taatjes
,
C. A.
, and
Fernandes
,
R. X.
,
2011
, “
Role of Peroxy Chemistry in the High-Pressure Ignition of n-Butanol—Experiments and Detailed Kinetic Modelling
,”
Combust. Flame
,
158
(
8
), pp.
1444
1455
.
40.
Taatjes
,
C. A.
,
Hansen
,
N.
,
Osborn
,
D. L.
,
Kohse-Hoeinghaus
,
K.
,
Cool
,
T. A.
, and
Westmoreland
,
P. R.
,
2008
, ““
Imaging” Combustion Chemistry Via Multiplexed Synchrotron-Photoionization Mass Spectrometry
,”
Phys. Chem. Chem. Phys.
,
10
(
1
), pp.
20
34
.
41.
Welz
,
O.
,
Savee
,
J. D.
,
Osborn
,
D. L.
,
Vasu
,
S. S.
,
Percival
,
C. J.
,
Shallcross
,
D. E.
, and
Taatjes
,
C. A.
,
2012
, “
Direct Kinetic Measurements of Criegee Intermediate (CH2OO) Formed by Reaction of CH2I With O2
,”
Science
,
335
(
6065
), pp.
204
207
.
42.
Scheer
,
A. M.
,
Welz
,
O.
,
Sasaki
,
D. Y.
,
Osborn
,
D. L.
, and
Taatjes
,
C. A.
,
2013
, “
Facile Rearrangement of 3-Oxoalkyl Radicals is Evident in Low-Temperature Gas-Phase Oxidation of Ketones
,”
J. Am. Chem. Soc.
,
135
(
38
), pp.
14256
14265
.
43.
Welz
,
O.
,
Klippenstein
,
S. J.
,
Harding
,
L. B.
,
Taatjes
,
C. A.
, and
Zador
,
J.
,
2013
, “
Unconventional Peroxy Chemistry in Alcohol Oxidation: The Water Elimination Pathway
,”
J. Phys. Chem. Lett.
,
4
(
3
), pp.
350
354
.
44.
Welz
,
O.
,
Zádor
,
J.
,
Savee
,
J. D.
,
Ng
,
M. Y.
,
Meloni
,
G.
,
Fernandes
,
R. X.
,
Sheps
,
L.
,
Simmons
,
B. A.
,
Lee
,
T. S.
,
Osborn
,
D. L.
, and
Taatjes
,
C. A.
,
2012
, “
Low-Temperature Combustion Chemistry of Biofuels: Pathways in the Initial Low-Temperature (550 K–750 K) Oxidation Chemistry of Isopentanol
,”
Phys. Chem. Chem. Phys.
,
14
(
9
), pp.
3112
3127
.
45.
Taatjes
,
C. A.
,
Miller
,
J. A.
,
Zádor
,
J.
,
Fernandes
,
R. X.
, and
Jusinski
,
L. E.
,
2009
, “
Advanced Fuel Chemistry for Advanced Engines
,” Sandia National Laboratories, Livermore, CA,
Report No. SAND2009-6051
.
46.
Welz
,
O.
,
Savee
,
J. D.
,
Eskola
,
A. J.
,
Sheps
,
L.
,
Osborn
,
D. L.
, and
Taatjes
,
C. A.
,
2013
, “
Low-Temperature Combustion Chemistry of Biofuels: Pathways in the Low-Temperature (550–700K) Oxidation Chemistry of Isobutanol and Tert-Butanol
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
493
500
.
47.
Osborn
,
D. L.
,
Zou
,
P.
,
Johnsen
,
H.
,
Hayden
,
C. C.
,
Taatjes
,
C. A.
,
Knyazev
,
V. D.
,
North
,
S. W.
,
Peterka
,
D. S.
,
Ahmed
,
M.
, and
Leone
,
S. R.
,
2008
, “
The Multiplexed Chemical Kinetic Photoionization Mass Spectrometer: A New Approach to Isomer-Resolved Chemical Kinetics
,”
Rev. Sci. Instrum.
,
79
(
10
), p. 104103.
48.
Savee
,
J. D.
,
Soorkia
,
S.
,
Welz
,
O.
,
Selby
,
T. M.
,
Taatjes
,
C. A.
, and
Osborn
,
D. L.
,
2012
, “
Absolute Photoionization Cross-Section of the Propargyl Radical
,”
J. Chem. Phys.
,
136
(
13
), p.
134307
.
49.
Eskola
,
A. J.
,
Welz
,
O.
,
Savee
,
J. D.
,
Osborn
,
D. L.
, and
Taatjes
,
C. A.
,
2013
, “
Synchrotron Photoionization Measurements of Fundamental Autoignition Reactions: Product Formation in Low-Temperature Isobutane Oxidation
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
385
392
.
50.
NIST
,
2011
, “
NIST Chemical Kinetic Database
,” National Institute of Standards and Technology (
NIST
), Gaithersburg, MD.
51.
Kaiser
,
E.
,
Westbrook
,
C.
, and
Pitz
,
W.
,
1986
, “
Acetaldehyde Oxidation in the Negative Temperature Coefficient Regime: Experimental and Modeling Results
,”
Int. J. Chem. Kinet.
,
18
(
6
), pp.
655
688
.
52.
Meloni
,
G.
,
Zou
,
P.
,
Klippenstein
,
S. J.
,
Ahmed
,
M.
,
Leone
,
S. R.
,
Taatjes
,
C. A.
, and
Osborn
,
D. L.
,
2006
, “
Energy-Resolved Photoionization of Alkylperoxy Radicals and the Stability of Their Cations
,”
J. Am. Chem. Soc.
,
128
(
41
), pp.
13559
13567
.
53.
Cord
,
M.
,
Husson
,
B.
,
Huerta
,
J. C. L.
,
Herbinet
,
O.
,
Glaude
,
P.-A.
,
Fournet
,
R.
,
Sirjean
,
B.
,
Battin-Leclerc
,
F.
,
Ruiz-Lopez
,
M.
,
Wang
,
Z.
,
Xie
,
M.
,
Cheng
,
Z.
, and
Qi
,
F.
,
2012
, “
Study of the Low Temperature Oxidation of Propane
,”
J. Phys. Chem. A
,
116
(
50
), pp.
12214
12228
.
54.
Rosman
,
K.
, and
Taylor
,
P.
,
1998
, “
Isotopic Compositions of the Elements 1997
,”
J. Phys. Chem. Ref. Data
,
27
(
6
), pp.
1275
1287
.
You do not currently have access to this content.