The main aim of this research is focused on determining the velocity and particle density profiles across the flame propagation of microlycopodium dust particles. In this model, it is tried to incorporate the forces acting on the particles such as thermophoretic, gravitational, and buoyancy in the Lagrangian equation of motion. For this purpose, it is considered that the flame structure has four zones (i.e., preheat, vaporization, reaction, and postflame zones) and the temperature profile, as the unknown parameter in the thermophoretic force, is extracted from this model. Consequently, employing the Lagrangian equation with the known elements results in the velocity distribution versus the forefront of the combustion region. Satisfactory agreement is achieved between the present model and previously published experiments. It is concluded that the maximum particle concentration and velocity are gained on the flame front with the gradual decrease in the distance away from this location.

References

References
1.
Seshadri
,
K.
,
Berlad
,
A. L.
, and
Tangirala
,
V.
,
1992
, “
The Structure of Premixed Particle-Cloud Flames
,”
Combust. Flame
,
89
(
3–4
), pp.
333
342
.
2.
Chen
,
J. L.
,
Dobashi
,
R.
, and
Hirano
,
T.
,
1996
, “
Mechanisms of Flame Propagation Through Combustible Particle Clouds
,”
J. Loss Prev. Process Ind.
,
9
(
3
), pp.
225
229
.
3.
Proust
,
C.
, and
Veyssiere
,
B.
,
1988
, “
Fundamental Properties of Flames Propagating in Starch Dust-Air Mixtures
,”
Combust. Sci. Technol.
,
62
(
4–6
), pp.
149
172
.
4.
Sun
,
J. H.
,
Dobashi
,
R.
, and
Hirano
,
T.
,
2001
, “
Temperature Profile Across the Combustion Zone Propagating Through an Iron Particle Cloud
,”
J. Loss Prev. Process Ind.
,
14
(
6
), pp.
463
467
.
5.
Sun
,
J. H.
,
Dobashi
,
R.
, and
Hirano
,
T.
,
2003
, “
Concentration Profile of Particles Across a Flame Propagating Through an Iron Particle Cloud
,”
Combust. Flame
,
134
(
4
), pp.
381
387
.
6.
Yin
,
Y.
,
Sun
,
J. H.
,
Ding
,
Y. B.
,
Guo
,
S.
, and
He
,
X. C.
,
2009
, “
Experimental Study on Flames Propagating Through Zirconium Particle Clouds
,”
J. Hazard. Mater.
,
170
(
1
), pp.
340
344
.
7.
Ding
,
Y. B.
,
Sun
,
J. H.
,
He
,
X. C.
,
Wang
,
Q. H.
,
Yin
,
Y.
,
Xu
,
Y.
, and
Chen
,
X. F.
,
2010
, “
Flame Propagation Characteristics and Flame Structures of Zirconium Particle Cloud in a Small-Scale Chamber
,”
Chin. Sci. Bull.
,
55
(
34
), pp.
3954
3959
.
8.
Sun
,
J. H.
,
Dobashi
,
R.
, and
Hirano
,
T.
,
2006
, “
Structure of Flames Propagating Through Aluminum Particles Cloud and Combustion Process of Particles
,”
J. Loss Prev. Process Ind.
,
19
(
6
), pp.
769
773
.
9.
Han
,
O. S.
,
Yashima
,
M.
,
Matsuda
,
T.
,
Matsui
,
H.
,
Miyake
,
A.
, and
Ogawa
,
T.
,
2001
, “
A Study of Flame Propagation Mechanisms in Lycopodium Dust Clouds Based on Dust Particles' Behavior
,”
J. Loss Prev. Process Ind.
,
14
(
3
), pp.
153
160
.
10.
Han
,
O. S.
,
Yashima
,
M.
,
Matsuda
,
T.
,
Matsui
,
H.
,
Miyake
,
A.
, and
Ogawa
,
T.
,
2000
, “
Behavior of Flame Propagating Through Lycopodium Dust Clouds in a Vertical Duct
,”
J. Loss Prev. Process Ind.
,
13
(
6
), pp.
449
457
.
11.
Proust
,
C.
,
2006
, “
Flame Propagation and Combustion in Some Dust Air Mixtures
,”
J. Loss Prev. Process Ind.
,
19
(
1
), pp.
89
100
.
12.
Kern
,
H.
,
Wieser
,
G. J.
, and
Raupenstrauch
,
H.
,
2015
, “
Flame Propagation in Lycopodium/Air Mixtures Below Atmospheric Pressure
,”
J. Loss Prev. Process Ind.
,
36
, pp.
281
286
.
13.
Bidabadi
,
M.
, and
Rahbari
,
A.
,
2009
, “
Modeling Combustion of Lycopodium Particles by Considering the Temperature Difference Between the Gas and the Particles
,”
Combust. Explos. Shock Waves
,
45
(
3
), pp.
278
285
.
14.
Bidabadi
,
M.
, and
Rahbari
,
A.
,
2009
, “
Novel Analytical Model for Predicting the Combustion Characteristics of Premixed Flame Propagation in Lycopodium Dust Particles
,”
J. Mech. Sci. Technol.
,
23
(
9
), pp.
2417
2423
.
15.
Bidabadi
,
M.
,
Fanaee
,
A.
, and
Rahbari
,
A.
,
2010
, “
Investigation Over the Recirculation Influence on the Combustion of Micro Organic Dust Particles
,”
Appl. Math. Mech.
,
31
(
6
), pp.
685
696
.
16.
Bidabadi
,
M.
,
Haghiri
,
A.
, and
Rahbari
,
A.
,
2010
, “
The Effect of Lewis and Damkohler Numbers on the Flame Propagation Through Micro-Organic Dust Particles
,”
Int. J. Therm. Sci.
,
49
(
3
), pp.
534
542
.
17.
Bidabadi
,
M.
,
Shakibi
,
A.
, and
Rahbari
,
A.
,
2011
, “
The Radiation and Heat Loss Effects on the Premixed Flame Propagation Through Lycopodium Dust Particles
,”
J. Taiwan Inst. Chem. Eng.
,
42
(
1
), pp.
180
185
.
18.
Haghiri
,
A.
, and
Bidabadi
,
M.
,
2010
, “
Modeling of Laminar Flame Propagation Through Organic Dust Cloud With Thermal Radiation Effect
,”
Int. J. Therm. Sci.
,
49
(
8
), pp.
1446
1456
.
19.
Rahbari
,
A.
,
Shakibi
,
A.
, and
Bidabadi
,
M.
,
2015
, “
A Two-Dimensional Analytical Model of Laminar Flame in Lycopodium Dust Particles
,”
Korean J. Chem. Eng.
,
32
(
9
), pp.
1798
1803
.
20.
Fujita
,
O.
, and
Ito
,
K.
,
2002
, “
Observation of Soot Agglomeration Process With Aid of Thermophoretic Force in a Microgravity Jet Diffusion Flame
,”
Exp. Therm. Fluid Sci.
,
26
(
2–4
), pp.
305
311
.
21.
Pushkar
,
T.
,
James
,
P. T.
,
Xiaodong
,
F.
, and
Amy
,
R.
,
2003
, “
Estimation of Particle Volume Fraction, Mass Fraction and Number Density in Thermophoretic Deposition Systems
,”
Int. J. Heat Mass Transfer
,
46
(
17
), pp.
3201
3209
.
22.
Choi
,
J. H.
,
Fujita
,
O.
,
Tsuiki
,
T.
,
Kim
,
J.
, and
Chung
,
S. H.
,
2008
, “
Experimental Study on Thermophoretic Deposition of Soot Particles in Laminar Diffusion Flames Along a Solid Wall in Microgravity
,”
Exp. Therm. Fluid Sci.
,
32
(
8
), pp.
1484
1491
.
23.
Walsh
,
K.
,
Weimer
,
A. W.
, and
Hrenya
,
C. M.
,
2006
, “
Thermophoretic Deposition of Aerosol Particles in Laminar Tube Flow With Mixed Convection
,”
J. Aerosol Sci.
,
37
(
6
), pp.
715
734
.
24.
Bidabadi
,
M.
,
Haghiri
,
A.
, and
Rahbari
,
A.
,
2010
, “
Mathematical Modeling of Velocity and Number Density Profiles of Particles Across the Flame Propagation Through a Micro-Iron Dust Cloud
,”
J. Hazard. Mater.
,
176
(
1–3
), pp.
146
153
.
25.
Allen
,
M. D.
, and
Raabe
,
O. G.
,
1982
, “
Re-Evaluation of Millikan's Oil Drop Data for the Motion of Small Particles in Air
,”
J. Aerosol Sci.
,
13
(
6
), pp.
537
547
.
26.
Talbot
,
L.
,
Cheng
,
R. K.
,
Schefer
,
R. W.
, and
Willis
,
D. R.
,
1980
, “
Thermophoresis of Particles in a Heated Boundary Layer
,”
J. Fluid Mech.
,
101
(
04
), pp.
737
758
.
27.
Batchelor
,
G. K.
, and
Shen
,
C.
,
1985
, “
Thermophoretic Deposition of Particles in Gas Flowing Over Cold Surfaces
,”
J. Colloid Interface Sci.
,
107
(
1
), pp.
21
37
.
28.
Waldmann
,
L.
, and
Schmitt
,
K. H.
,
1966
, “
Thermophoresis and Diffusion Phoresis of Aerosols
,”
Aerosol Science
,
C. N.
Davies
, ed.,
Academic Press
,
New York
.
You do not currently have access to this content.