A mathematical model has been derived and used to develop a three-dimensional concentrating solar collector as presented in this article. The developed solar collector gives the required flux distribution along the longitudinal direction of tubular absorber. The model requires inputs like the profile of required flux distribution, local solar flux, dimensions of the absorber, and the distance of absorber from the reflector. The model is developed under the most common assumptions and showed a high validity of 99.99%. The effects of inputs on the design geometrical parameters such as curvature, steepness, surface area, and aperture diameter, which affect the manufacturing, space limitations, and cost analysis, are presented and discussed. It is shown that decreasing the initial radius, solar flux, and slope of flux distribution required at the absorber surface results in a less steep reflecting surface (RS), which is also favored with increase in absorber's radius and initial angles. Smaller reflecting surface area can be obtained by using larger values of initial radius, solar flux, and slope of the absorber flux distribution. Smaller initial curvatures can also be obtained by increasing initial angle, absorber's radius, and slope of flux distribution. Decreasing the initial radius, initial angle, and absorber's radius can limit the aperture's diameter such that it could fit the space limitation. Locations' high solar flux would reduce the aperture's diameter.

References

References
1.
Cheng
,
Z. D.
,
He
,
Y. L.
,
Cui
,
F. Q.
,
Du
,
B. C.
,
Zheng
,
Z. J.
, and
Xu
,
Y.
,
2014
, “
Comparative and Sensitive Analysis for Parabolic Trough Solar Collectors With a Detailed Monte Carlo Ray-Tracing Optical Model
,”
Appl. Energy
,
115
, pp.
559
572
.
2.
Harris
,
J. A.
, and
Duff
,
W. S.
,
1981
, “
Focal Plane Flux Distributions Produced by Solar Concentrating Reflectors
,”
Sol. Energy
,
27
(
5
), pp.
403
411
.
3.
Cheng
,
Z.-D.
,
He
,
Y.-L.
,
Du
,
B.-C.
,
Wang
,
K.
, and
Liang
,
Q.
,
2015
, “
Geometric Optimization on Optical Performance of Parabolic Trough Solar Collector Systems Using Particle Swarm Optimization Algorithm
,”
Appl. Energy
,
148
, pp.
282
293
.
4.
Haung
,
W.
,
Haung
,
F.
,
Hu
,
P.
, and
Chen
,
Z.
,
2013
, “
Prediction and Optimization of the Performance of Parabolic Solar Dish Concentrator With Sphere Receiver Using Analytical Function
,”
Renewable Energy
,
53
, pp.
18
26
.
5.
Kalogirou
,
S. A.
,
2004
, “
Solar Thermal Collectors and Applications
,”
Prog. Energy Combust. Sci.
,
30
(
3
), pp.
231
295
.
6.
Winston
,
R.
,
1974
, “
Principle of Solar Concentrators of a Novel Design
,”
Sol. Energy
,
16
(
1
), pp.
89
95
.
7.
Rabl
,
A.
,
1976
, “
Solar Concentrators With Maximal Concentration for Cylindrical Absorbers
,”
Appl. Opt.
,
15
(
7
), pp.
1871
1873
.
8.
Rabl
,
A.
,
1976
, “
Comparison of Solar Concentrators
,”
Sol. Energy
,
18
(
2
), pp.
93
111
.
9.
Roldán
,
M. I.
, and
Monterreal
,
R.
,
2014
, “
Heat Flux and Temperature Prediction on a Volumetric Receiver Installed in a Solar Furnace
,”
Appl. Energy
,
120
, pp.
65
74
.
10.
Yu
,
Q.
,
Wang
,
Z.
, and
Xu
,
E.
,
2014
, “
Analysis and Improvement of Solar Flux Distribution Inside a Cavity Receiver Based on Multi-Focal Points of Heliostat Field
,”
Appl. Energy
,
136
, pp.
417
430
.
11.
Shuai
,
Y.
,
Xia
,
X.-L.
, and
Tan
,
H.-P.
,
2008
, “
Radiation Performance of Dish Solar Concentrator/Cavity Receiver Systems
,”
Sol. Energy
,
82
(
1
), pp.
13
21
.
12.
Mokheimer
,
E. M.
,
Hussain
,
M. I.
,
Ahmed
,
S.
,
Habib
,
M. A.
, and
Al-Qutub
,
A. A.
,
2015
, “
On the Modeling of Steam Methane Reforming
,”
ASME J. Energy Resour. Technol.
,
137
(
1
), p.
012001
.
13.
Yücel
,
Ö.
, and
Hastaoglu
,
M. A.
,
2016
, “
Comprehensive Study of Steam Reforming of Methane in Membrane Reactors
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
052204
.
14.
Hong
,
H.
,
Liu
,
Q.
, and
Jin
,
H.
,
2009
, “
Solar Hydrogen Production Integrating Low-Grade Solar Thermal Energy and Methanol Steam Reforming
,”
ASME J. Energy Resour. Technol.
,
131
(
1
), p.
012601
.
15.
Bshish
,
A.
,
Yaakob
,
Z.
,
Ebshish
,
A.
, and
Alhasan
,
F. H.
,
2014
, “
Hydrogen Production Via Ethanol Steam Reforming Over Ni/Al2O3 Catalysts: Effect of Ni Loading
,”
ASME J. Energy Resour. Technol.
,
136
(
1
), p.
012601
.
16.
Leyko
,
A. B.
, and
Gupta
,
A. K.
,
2013
, “
Temperature and Pressure Effects on Hydrogen Separation From Syngas
,”
ASME J. Energy Resour. Technol.
,
135
(
3
), p.
034502
.
17.
Meier
,
R. H.
,
1987
, “
Ellipsoidal Solar Dish Concentrator
,”
U.S. Patent No. 4665895
.https://www.google.com/patents/US4665895
18.
Hockman
,
V. J.
,
1975
, “
Solar Radiation Collector and Concentrators
,” USRE Patent No. 30027 E.
19.
Hines
,
B. E.
, and
Jhnson
,
R. L.
,
2010
, “
Hybrid Primary Optical Component for Optical Concentrators
,”
U.S. Patent No. 7688525 B2
.http://www.google.ch/patents/US7688525
20.
Zalusky
,
J. T.
,
2010
, “
Placement of Solar Collector
,” U.S. Patent No. 20100004797.
21.
Jones
,
T. M.
,
1994
, “
System for Deicing Dish Mounted Antennae
,”
U.S. Patent No. 5353037 A
.https://www.google.com/patents/US5353037
22.
Tripanagnostopoulos
,
Y.
,
Georgostathis
,
P.
, and
Iliopoulou
,
A.
,
2009
, “
Optical Study of New Designs for CPVT Systems
,”
International Conference on Concentrating-PV
, Darmstadt, Germany.
23.
Stubblefield
,
R. R.
,
2008
, “
Solar Energy Collection Apparatus and Method
,”
U.S. Patent No. 3894528 A
.https://www.google.com/patents/US3894528
24.
Polk
,
D. E.
,
2011
, “
Concentrating Solar Energy Collector System With Photovoltaic Cells
,”
U.S. Patent No. 20110240097 A1
.http://www.google.com/patents/US20110240097
25.
Pantoleontos
,
G.
,
Kikkinides
,
E. S.
, and
Georgiadis
,
M. C.
,
2012
, “
A Heterogeneous Dynamic Model for the Simulation and Optimisation of the Steam Methane Reforming Reactor
,”
Int. J. Hydrogen Energy
,
37
(
21
), pp.
16346
16358
.
You do not currently have access to this content.