Hydrogen is a high energy content fuel and methane is currently the most preferred feedstock for hydrogen production. Direct thermal splitting of methane offers the cleanest technique to produce hydrogen and carbon as coproduct fuel. Carbonaceous catalysts have significant impact on methane to hydrogen conversion. This study presents thermogravimetric experiment results of carbon-catalyzed methane decomposition using commercial catalyst. Results are presented in terms of carbon formation rate, amount of carbon deposition on the catalyst, sustainability factor, catalyst activity, and kinetics of the reaction. The results show that weight gain because of carbon formation depends on reaction temperature, methane volume percent in the feed gas, and nature of the carbonaceous catalyst. It was observed that the reaction rate was dominant at the beginning, and deactivation rate was dominant toward the end of reaction. X-ray diffraction (XRD) and scanning electron microscopic (SEM) analysis of deactivated catalytic samples show decreasing disorder with increasing reaction temperature. Finally, performance comparison of activated carbons (ACs) studied in literature shows that activated carbon sample chosen in this study outperforms in terms of carbon deposition, reaction rate, carbon weight gain, and sustainability factor.

References

References
1.
Ozalp
,
N.
,
2009
, “
Energy Process-Step Model of Hydrogen Production in the U.S. Chemical Industry
,”
ASME J. Energy Resour. Technol.
,
131
(
2
), p.
022601
.
2.
Mokheimer
,
E. M. A.
,
Hussain
,
M. I.
,
Ahmed
,
S.
,
Habob
,
M. A.
, and
Al-Qutub
,
A. A.
,
2014
, “
On the Modelling of Steam Methane Reforming
,”
ASME J. Energy Resour. Technol.
,
137
(
1
), p.
012001
.
3.
Berry
,
G. D.
, and
Aceves
,
S. M.
,
2005
, “
The Case for Hydrogen in a Carbon Constrained World
,”
ASME J. Energy Resour. Technol.
,
127
(
2
), pp.
89
94
.
4.
Vellini
,
M.
, and
Tonziello
,
J.
,
2010
, “
Hydrogen Use in an Urban District: Energy and Environmental Comparisons
,”
ASME J. Energy Resour. Technol.
,
132
(
4
), p.
042601
.
5.
Ozalp
,
N.
,
Kogan
,
A.
, and
Epstein
,
M.
,
2009
, “
Solar Decomposition of Fossil Fuels as an Option for Sustainability
,”
Int. J. Hydrogen Energy
,
34
(
2
), pp.
710
720
.
6.
Bshish
,
A.
,
Yaakob
,
Z.
,
Ebshish
,
A.
, and
Alhasan
,
F. H.
,
2013
, “
Hydrogen Production Via Ethanol Steam Reforming Over Ni/Al2O3 Catalysts: Effect of Ni Loading
,”
ASME J. Energy Resour. Technol.
,
136
(
1
), p.
012601
.
7.
Gradisher
,
L.
,
Dutcher
,
B.
, and
Fan
,
M.
,
2015
, “
Catalytic Hydrogen Production From Fossil Fuels Via the Water Gas Shift Reaction
,”
Appl. Energy
,
139
, pp.
335
349
.
8.
Li
,
X.
,
Zhu
,
G.
,
Qi
,
S.
,
Huang
,
J.
, and
Yang
,
B.
,
2014
, “
Simultaneous Production of Hythane and Carbon Nanotubes Via Catalytic Decomposition of Methane With Catalysts Dispersed on Porous Supports
,”
Appl. Energy
,
130
, pp.
846
852
.
9.
Torres
,
D.
,
Pinilla
,
J. L.
,
Lázaro
,
M. J.
,
Moliner
,
R.
, and
Suelves
,
I.
,
2014
, “
Hydrogen and Multiwall Carbon Nanotubes Production by Catalytic Decomposition of Methane: Thermogravimetric Analysis and Scaling-Up of Fe–Mo Catalysts
,”
Int. J. Hydrogen Energy
,
39
(
8
), pp.
3698
3709
.
10.
Abanades
,
S.
,
Kimurab
,
H.
, and
Otsuka
,
H.
,
2014
, “
Hydrogen Production From Thermo-Catalytic Decomposition of Methane Using Carbon Black Catalysts in an Indirectly-Irradiated Tubular Packed-Bed Solar Reactor
,”
Int. J. Hydrogen Energy
,
39
(
33
), pp.
18770
18783
.
11.
Pinilla
,
J. L.
,
Suelves
,
I.
,
Lazaro
,
M. J.
, and
Molieiner
,
R.
,
2008
, “
Kinetic Study of the Thermal Decomposition of Methane Using Carboneous Catalysts
,”
Chem. Eng. J.
,
138
, pp.
301
306
.
12.
Suelves
,
I.
,
Pinilla
,
J. L.
,
Lázaro
,
M. J.
, and
Moliner
,
R.
,
2008
, “
Carbonaceous Materials as Catalysts for Decomposition of Methane
,”
Chem. Eng. J.
,
140
, pp.
432
438
.
13.
Serrano
,
D. P.
,
Botas
,
J. A.
, and
Guil-Lopez
,
R.
,
2009
, “
H2 Production From Methane Pyrolysis Over Commercial Carbon Catalysts: Kinetic and Deactivation Study
,”
Int. J. Hydrogen Energy
,
34
(
10
), pp.
4488
4494
.
14.
Serrano
,
D. P.
,
Botas
,
J. A.
,
Fierro
,
J. L. G.
,
Guil-Lopez
,
R.
,
Pizarro
,
P.
, and
Gomez
,
G.
,
2010
, “
Hydrogen Production by Methane Decomposition: Origin of the Catalytic Activity of Carbon Materials
,”
Fuel
,
89
(
6
), pp.
1241
1248
.
15.
Abbas
,
H. F.
, and
Daud
,
W. M. A. W.
,
2009
, “
Thermocatalytic Decomposition of Methane Using Palm Shell Based Activated Carbon: Kinetic and Deactivation Studies
,”
Fuel Process. Technol.
,
90
(
9
), pp.
1167
1174
.
16.
Shilapuram
,
V.
,
Ozalp
,
N.
,
Oschatz
,
M.
,
Borchardt
,
L.
, and
Kaskel
,
S.
,
2014
, “
Hydrogen Production From Catalytic Decomposition of Methane Over Ordered Mesoporous Carbons (CMK-3) and Carbide-Derived Carbon (DUT-19)
,”
Carbon
,
67
, pp.
377
389
.
17.
Shilapuram
,
V.
,
Ozalp
,
N.
,
Oschatz
,
M.
,
Borchardt
,
L.
, and
Kaskel
,
S.
,
2014
, “
Thermogravimetric Analysis of Activated Carbons, Ordered Mesoporous Carbide-Derived Carbons, and Their Deactivation Kinetics of Catalytic Methane Decomposition
,”
Ind. Eng. Chem. Res.
,
53
(
5
), pp.
1741
1753
.
18.
Ozalp
,
N.
, and
Shilapuram
,
V.
,
2011
, “
Characterization of Activated Carbon for Carbon Laden Flows in a Solar Reactor
,”
ASME
Paper No. AJTEC2011-44381.
19.
Moliner
,
R.
,
Suelves
,
I.
,
Lázaro
,
M. J.
, and
Moreno
,
O.
,
2005
, “
Thermocatalytic Decomposition of Methane Over Activated Carbons: Influence of Textural Properties and Surface Chemistry
,”
Int. J. Hydrogen Energy
,
30
(
3
), pp.
293
300
.
20.
Suelves
,
I.
,
Lázaro
,
M. J.
,
Moliner
,
R.
,
Pinilla
,
J. L.
, and
Cubero
,
H.
,
2007
, “
Hydrogen Production by Methane Decarbonization: Carbonaceous Catalysts
,”
Int. J. Hydrogen Energy
,
32
(
15
), pp.
3320
3326
.
21.
Ashok
,
J.
,
Naveen Kumar
,
S.
,
Venugopal
,
A.
,
Durga Kumari
,
V.
,
Tripathi
,
S.
, and
Subrahmanyam
,
M.
,
2008
, “
COx Free Hydrogen by Methane Decomposition Over Activated Carbons
,”
Catal. Commun.
,
9
(
1
), pp.
164
169
.
22.
Kim
,
M. H.
,
Lee
,
E. K.
,
Jun
,
J. H.
,
Kong
,
S. J.
,
Han
,
G. Y.
,
Lee
,
B. K.
,
Lee
,
T. J.
, and
Yoon
,
K. J.
,
2004
, “
Hydrogen Production by Catalytic Decomposition of Methane Over Activated Carbons: Kinetic Study
,”
Int. J. Hydrogen Energy
,
29
(
2
), pp.
187
193
.
23.
Bai
,
Z.
,
Chen
,
H.
,
Li
,
B.
, and
Li
,
W.
,
2005
, “
Catalytic Decomposition of Methane Over Activated Carbon
,”
J. Anal. Appl. Pyrolysis
,
73
(
2
), pp.
335
341
.
24.
Muradov
,
N.
,
Smith
,
F.
, and
T-Raissi
,
A.
,
2005
, “
Catalytic Activity of Carbons for Methane Decomposition
,”
Catal. Today
,
102–103
, pp.
225
233
.
25.
Chen
,
W. H.
, and
Lin
,
B. J.
,
2013
, “
Hydrogen and Synthesis Gas Production From Activated Carbon and Steam Via Reusing Carbon Dioxide
,”
Appl. Energy
,
101
, pp.
551
559
.
26.
Serrano
,
D. P.
,
Botas
,
J. A.
,
Fierro
,
J. L. G.
,
Guil-Lopez
,
R.
,
Pizarro
,
P.
, and
Gomez
,
G.
,
2010
, “
Hydrogen Production by Methane Decomposition: Origin of the Catalytic Activity of Carbon Materials
,”
Fuel
,
89
(
6
), pp.
1241
1248
.
27.
Botas
,
J. A.
,
Serrano
,
D. P.
,
Guil-Lopez
,
R.
,
Pizarro
,
P.
, and
Gomez
,
G.
,
2010
, “
Methane Catalytic Decomposition Over Ordered Mesoporous Carbons: A Promising Route for Hydrogen Production
,”
Int. J. Hydrogen Energy
,
35
(
18
), pp.
9788
9794
.
28.
Serrano
,
D. P.
,
Botas
,
J. A.
,
Pizarro
,
P.
,
Guil-Lopez
,
R.
, and
Gomez
,
G.
,
2008
, “
Ordered Mesoporous Carbons as Highly Active Catalysts for Hydrogen Production by CH4 Decomposition
,”
Chem. Commun.
,
48
, pp.
6585
6587
.
29.
Abbas
,
H. F.
, and
Daud
,
W. M. A. W.
,
2009
, “
Deactivation of Palm Shell-Based Activated Carbon Catalyst Used for Hydrogen Production by Thermocatalytic Decomposition of Methane
,”
Int. J. Hydrogen Energy
,
34
(
15
), pp.
6231
6241
.
30.
Chen
,
J.
,
Yang
,
Z.
, and
Li
,
Y.
,
2010
, “
Investigation on the Structure and the Oxidation Activity of the Solid Carbon Produced From Catalytic Decomposition of Methane
,”
Fuel
,
89
(
5
), pp.
943
948
.
You do not currently have access to this content.