Air-conditioning loads during the warmer months of the year are large contributors to an increase in the daily peak electrical demand. Traditionally, utility companies boost output to meet daily cooling load spikes, often using expensive and polluting fossil fuel plants to match the demand. Likewise, heating, ventilation, and air conditioning (HVAC) system components must be sized to meet these peak cooling loads. However, the use of a properly sized stratified chilled-water storage system in conjunction with conventional HVAC system components can shift daily energy peaks from cooling loads to off-peak hours. This process is examined in light of the recent development of small modular nuclear reactors (SMRs). In this study, primary components of an air-conditioning system with a stratified chilled-water storage tank were modeled in FORTRAN 95. A basic chiller operation criterion was employed. Simulation results confirmed earlier work that the air-conditioning system with thermal energy storage (TES) capabilities not only reduced daily peaks in energy demand due to facility cooling loads but also shifted the energy demand from on-peak to off-peak hours, thereby creating a more flattened total electricity demand profile. Thus, coupling chilled-water storage-supplemented HVAC systems to SMRs is appealing because of the decrease in necessary reactor power cycling, and subsequently reduced associated thermal stresses in reactor system materials, to meet daily fluctuations in cooling demand. Also, such a system can be used as a thermal sink during reactor transients or a buffer due to renewable intermittency in a nuclear hybrid energy system (NHES).

References

References
1.
Aydogan
,
F.
,
Black
,
G.
,
Black
,
M. A. T.
, and
Solan
,
D.
,
2015
, “
Quantitative and Qualitative Comparison of Light Water and Advanced Small Modular Reactors
,”
ASME J. Nucl. Eng. Radiat. Sci.
,
1
(
4
), p.
041001
.
2.
Ingersoll
,
D. T.
,
Houghton
,
Z. J.
,
Bromm
,
R.
, and
Desportes
,
C.
,
2014
, “
Integration of NuScale SMR With Desalination Technologies
,”
ASME
Paper No. SMR2014-3392.
3.
Ingersoll
,
D. T.
,
Houghton
,
Z. J.
,
Bromm
,
R.
, and
Desportes
,
C.
,
2014
, “
NuScale Small Modular Reactor for Co-Generation of Electricity and Water
,”
Desalination
,
340
, pp.
84
93
.
4.
Ingersoll
,
D.
,
Houghton
,
Z.
,
Bromm
,
R.
,
Desportes
,
C.
,
McKellar
,
M.
, and
Boardman
,
R.
,
2014
, “
Extending Nuclear Energy to Non-Electrical Applications
,”
19th Pacific Basin Nuclear Conference
, Vancouver, BC, Canada, Aug. 24–28, Paper No. PBNC2014-209.
5.
Lubis
,
L. L.
,
Dincer
,
I.
, and
Rosen
,
M. A.
,
2010
, “
Life Cycle Assessment of Hydrogen Production Using Nuclear Energy: An Application Based on Thermochemical Water Splitting
,”
ASME J. Energy Resour. Technol.
,
132
(
2
), p.
021004
.
6.
Harvego
,
E. A.
,
McKellar
,
M. G.
,
Sohal
,
M. S.
,
O'Brien
,
J. E.
, and
Herring
,
J. S.
,
2010
, “
System Evaluation and Economic Analysis of a Nuclear Reactor Powered High-Temperature Electrolysis Hydrogen-Production Plant
,”
ASME J. Energy Resour. Technol.
,
132
(
2
), p.
021005
.
7.
Hammache
,
A.
, and
Bilgen
,
E.
,
1992
, “
Nuclear Hydrogen Production Based on Sulfuric Acid Decomposition Process
,”
ASME J. Energy Resour. Technol.
,
114
(
3
), pp.
227
234
.
8.
Mazloum
,
Y.
,
Sayah
,
H.
, and
Nemer
,
M.
,
2016
, “
Static and Dynamic Modeling Comparison of an Adiabatic Compressed Air Energy Storage System
,”
ASME J. Energy Resour. Technol.
,
138
(
6
), p.
062001
.
9.
Papaioannou
,
I. T.
,
Purvins
,
A.
,
Shropshire
,
D.
, and
Carlsson
,
J.
,
2014
, “
Role of a Hybrid Energy System Comprising a Small/Medium-Sized Nuclear Reactor and a Biomass Processing Plant in a Scenario With a High Deployment of Onshore Wind Farms
,”
J. Energy Eng.
,
140
(
1
), p.
04013005
.
10.
Orhan
,
M. F.
,
Dincer
,
I.
,
Naterer
,
G. F.
, and
Rosen
,
M. A.
,
2010
, “
Coupling of Copper-Chloride Hybrid Thermochemical Water Splitting Cycle With a Desalination Plant for Hydrogen Production from Nuclear Energy
,”
Int. J. Hydrogen Energy
,
35
(
4
), pp.
1560
1574
.
11.
Li
,
Y.
,
Cao
,
H.
,
Wang
,
S.
,
Jin
,
Y.
,
Li
,
D.
,
Wang
,
X.
, and
Ding
,
Y.
,
2014
, “
Load Shifting of Nuclear Power Plants Using Cryogenic Energy Storage Technology
,”
Appl. Energy
,
113
, pp.
1710
1716
.
12.
Forsberg
,
C.
,
2013
, “
Hybrid Systems to Address Seasonal Mismatches Between Electricity Production and Demand in Nuclear Renewable Electrical Grids
,”
Energy Policy
,
62
, pp.
333
341
.
13.
Suri
,
R. K.
,
Al-Marafie
,
A. M. R.
,
Maheshwari
,
G. P.
,
Al-Juwaydal
,
F.
,
Al-Jandal
,
S.
,
Al-Madani
,
K.
, and
Aburshaid
,
H.
,
1989
, “
Experimental Investigation of Chilled Water Storage Technique for Peak Power Shaving
,”
Int. J. Refrig.
,
12
(
4
), pp.
213
219
.
14.
Al-Marafie
,
A. M. R.
,
1987
, “
Stratification Behaviour in a Chilled Water Storage Tank
,”
Int. J. Refrig.
,
10
(
6
), pp.
364
366
.
15.
Karim
,
M. A.
,
2010
, “
Experimental Investigation of a Stratified-Chilled Water Thermal Storage System
,”
Appl. Therm. Eng.
,
31
(
11–12
) pp.
1853
1860
.
16.
Shin
,
M. S.
,
Kim
,
H. S.
,
Jang
,
D. S.
,
Lee
,
S. N.
,
Lee
,
Y. S.
, and
Yoon
,
H. G.
,
2003
, “
Numerical and Experimental Study on the Design of a Stratified Thermal Storage System
,”
Appl. Therm. Eng.
,
24
(
1
), pp.
17
27
.
17.
Nelson
,
J. E. B.
,
Balakrishnan
,
A. R.
, and
Murthy
,
S. S.
,
1998
, “
Experiments on Stratified Chilled-Water Tanks
,”
Int. J. Refrig.
,
22
(
3
), pp.
216
234
.
18.
Nelson
,
J. E. B.
,
Balakrishnan
,
A. R.
, and
Murthy
,
S. S.
,
1999
, “
Parametric Studies on Thermally Stratified Chilled Water Storage Systems
,”
Appl. Therm. Eng.
,
19
(
1
), pp.
89
115
.
19.
Osman
,
K.
,
Khaireed
,
S. M. N. A.
,
Ariffin
,
M. K.
, and
Senawi
,
M. Y.
,
2008
, “
Dynamic Modeling of Stratification for Chilled Water Storage Tank
,”
Energy Conserv. Manage.
,
49
(
11
), pp.
3270
3273
.
20.
Zhang
,
Z.
,
Turner
,
W. D.
,
Chen
,
Q.
,
Xu
,
Q.
, and
Deng
,
S.
,
2011
, “
Tank Size and Operating Strategy Optimization of a Stratified Chilled Water Storage System
,”
Appl. Therm. Eng.
,
31
(
14–15
), pp.
2656
2664
.
21.
Duda
,
S. W.
,
2014
, “
Avoid Outdated Condenser Water Rules-of-Thumb
,”
ASHRAE J.
,
56
(
3
), pp.
50
54
.
22.
Baker
,
D. R.
,
1984
,
Cooling Tower Performance
,
Chemical Publishing Company
,
New York
, pp.
79
106
.
23.
Hill
,
G. B.
,
Pring
,
E. J.
, and
Osborn
,
P. D.
,
1990
,
Cooling Towers Principles and Practice
,
Butterworth-Heinemann
,
Rushden, UK
, pp.
140
145
.
24.
Baker
,
D. R.
, and
Shryock
,
H. A.
,
2012
, “
A Comprehensive Approach to the Analysis of Cooling Tower Performance
,” SPX Cooling Technologies, Kansas City, KS.
25.
Evapco
,
2015
, “
AT Cooling Tower—Thermal Performance
,” Evapco Inc., Taneytown, MD.
26.
Daeil Aqua, Ltd.
,
2000
, “
Cooling Tower Technical Site of Daeil Aqua Co., Ltd. for Cooling Tower Engineers, Operators, and Purchases
,” Daeil Aqua Ltd., Gyeongsangnam-Do, South Korea.
27.
Kloppers
,
J. C.
, and
Kroger
,
D. G.
,
2005
, “
Cooling Tower Performance Evaluation: Merkel, Poppe and e-NTU Methods of Analysis
,”
ASME J. Eng. Gas Turbines Power
,
127
(
1
), pp.
1
7
.
28.
Stewart
,
W. E.
,
2000
, “
Improved Fluids for Naturally Stratified Chilled Water Storage Systems
,”
ASHRAE Trans.: Res.
,
106
(
1
), pp.
264
276
.
29.
Spall
,
R. E.
,
1998
, “
A Numerical Analysis of the Stratification Properties of Chilled Water Storage Tanks Charged at the Freezing Point Temperature
,”
ASME J. Heat Transfer
,
120
(
1
), pp.
271
274
.
30.
Musser
,
A.
, and
Bahnfleth
,
W. P.
,
1998
, “
Evolutions of Temperature Distributions in a Full-Scale Stratified Chilled-Water Storage Tank With Radial Diffusers
,”
ASHRAE Trans.: Res.
,
104
, pp.
55
67
.
31.
Musser
,
A.
, and
Bahnfleth
,
W. P.
,
2001
, “
Parametric Study of Charging Inlet Diffuser Performance in Stratified Chilled Water Storage Tanks With Radial Diffusers: Part 1—Model Development and Validation
,”
ASHRAE Trans.: Res.
,
7
(
1
), pp.
22
40
.
32.
Kaloudis
,
E.
,
Grigoriadis
,
D. G. E.
,
Papanicolaou
,
E.
, and
Panidis
,
T.
,
2014
, “
Large Eddy Simulation of Thermocline Flow Phenomena and Mixing During Discharging of an Initially Homogeneous or Stratified Storage Tank
,”
Eur. J. Mech., B: Fluids
,
48
, pp.
94
114
.
You do not currently have access to this content.