This paper presents the results of a thermodynamic and economic evaluation of a novel hybrid combination of a compressed air energy storage (CAES) and a combined cycle power plant (CCPP). The new cycle is modeled on the basis of a GE LM6000 gas turbine model, an adiabatic compressor model, an air expander, and a conventional dual-pressure heat recovery steam generator (HRSG) configuration. Furthermore, a detailed design of the recuperator is presented. With the simulated components, a storage efficiency of 60% is reached. In combined heat and power (CHP) configuration, the total efficiency of the plant reaches up to 86.2%. The thermodynamic and economic performance is compared to a conventional LM6000 combined cycle. For the economic evaluation, the German electricity day-ahead prices and average gas price of the year 2014 are used. Overall, it is found that the CAES/CCPP concept exhibits far more operation hours per year and a higher profit margin than the compared CCPP. Taking into account the investment and operational costs, especially with steam extraction, the net present value (NPV) of the novel cycle is higher than that of the combined cycle, despite the challenging market environment for storage technologies in Germany.

References

References
1.
Madeler
,
R.
, and
Latz
,
J.
,
2013
, “
Economics of Centralized and Decentralized Compressed Air Energy Storage for Enhanced Grid Integration of Wind Power
,”
Appl. Energy
,
101
, pp.
299
309
.
2.
Rogers
,
A.
,
Henderson
,
A.
,
Wang
,
X.
, and
Negnevitsky
,
M.
,
2014
, “
Compressed Air Energy Storage: Thermodynamic and Economic Review
,”
IEEE Power and Energy Society General Meeting
, Oct. 29, Paper No. 6939098.
3.
Nakhamkin
,
M.
,
Andersson
,
L.
, and
Swensen
,
E.
,
1992
, “
AEC 110 MW CAES Plant: Status of Project
,”
ASME J. Eng. Gas Turbines Power
,
114
(
4
), pp.
695
700
.
4.
Schainker
,
R. B.
, and
Nakhamkin
,
M.
,
1985
, “
Compressed-Air Energy Storage (CAES): Overview, Performance and Cost Data for 25 MW to 220 MW Plants
,”
IEEE Trans. Power Appar. Syst.
,
PAS-104
(
4
), pp.
791
795
.
5.
Dresser-Rand
,
2016
, “
SMARTCAES
,” Siemens Power and Gas, http://www.dresser-rand.com/industries/energy-environment/compressed-air-energy-storage/
6.
Grazzini
,
G.
, and
Milazzo
,
A.
,
2012
, “
A Thermodynamic Analysis of Multistage Adiabatic CAES
,”
Proc. IEEE
,
100
(
2
), pp.
461
472
.
7.
Hartmann
,
N.
,
Vohringer
,
O.
,
Kruck
,
C.
, and
Eltrop
,
L.
,
2012
, “
Simulation and Analysis of Different Adiabatic Compressed Air Energy Storage Plant Configurations
,”
Appl. Energy
,
93
, pp.
541
548
.
8.
Grazzini
,
G.
, and
Milazzo
,
A.
,
2008
, “
Thermodynamic Analysis of CAES/TES Systems for Renewable Energy Plants
,”
Renewable Energy
,
33
(
9
), pp.
1998
2006
.
9.
RWE Power
,
2010
, “
ADELE- Der Adiabate Druckluftspeicher Fur Die Elektrizitatsversorgung
,” Essen, Germany, http://www.dlr.de/portaldata/1/resources/standorte/stuttgart/broschuere_adele_1_.pdf
10.
Moser
,
P.
,
2014
, “
Status der Entwicklung des adiabaten Druckluftspeichers ADELE
,” Leopoldina-Symposium Halle, pp.
11
12
.
11.
Lightsail Energy
, 2009, Berkeley, CA, http://www.lightsail.com/
12.
CAEstorage
, 2012, Egenhofen, Germany, http://www.caestorage.de/
13.
Upendra Roy
,
B. P.
, and
Rengarajan
,
N.
,
2017
, “
Feasibility Study of an Energy Storage System for Distributed Generation System in Islanding Mode
,”
ASME J. Energy Resour. Technol.
,
139
(
1
), p.
011901
.
14.
Nielsen
,
L.
,
Qi
,
D.
,
Brinkmeier
,
N.
, and
Leithner
,
R.
,
2012
, “
Druckluftspeicherkraftwerke zur Netzintegration–ISACOAST CC
,” 4. Göttinger Tagung zu aktuellen Fragen zur Entwicklung der Energieversorgungsnetze, Göttingen, pp.
1
8
15.
Hartmann
,
N.
,
Eltrop
,
L.
,
Nauer
,
N.
,
Salzer
,
J.
,
Schwarz
,
S.
, and
Schmidt
,
M.
,
2012
, “
Stromspeicherpotenziale für Deutschland
,” University of Stuttgart, Stuttgart, Germany, http://www.zfes.uni-stuttgart.de/deutsch/downloads/20120727_Final_Stromspeicherpotenziale_fuer_Deutschland-.pdf
16.
Wick
,
J.
,
2006
, “
Advanced Gas Turbine Technology GT26
,” Jornada Tecnológica, Madrid, pp.
1
29
.
17.
Savic
,
S.
,
Lindvall
,
K.
,
Papadopoulos
,
T.
, and
Ladwig
,
M.
,
2011
, “
The Next Generation KA24/GT24 From Alstom, The Pioneer In Operational Flexibility
,” Alstom, Saint-Ouen, France, http://www.multivu.com/assets/52004/documents/GT24-Technical-Paper-original.pdf
18.
GE Power & Water
,
2015
, “
LM6000-PF+ gas turbine with dry low emissions (DLE) combustor
,” General Electric Company, Fairfield, CT, https://powergen.gepower.com/content/dam/gepower-pgdp/global/en_US/documents/product/lm6000-pf-plus-fact-sheet.pdf
19.
Marcus
Nölke
,
2006
, “Compressed Air Energy Storage(CAES)–eine sinnvolle Ergänzung zur Energieversorgung?” Ph.D. defense presentation,
RWTH Aachen, Aachen
,
Germany
.
20.
Kim
,
Y. M.
,
Shin
,
D. G.
, and
Favrat
,
D.
,
2011
, “
Operating Characteristics of Constant-Pressure Compressed Air Energy Storage (CAES) System Combined With Pumped Hydro Storage Based on Energy and Exergy Analysis
,”
Energy
,
36
(
10
), pp.
6220
6233
.
21.
Kushnir
,
R.
,
Dayan
,
A.
, and
Ullmann
,
A.
,
2012
, “
Temperature and Pressure Variations Within Compressed Air Energy Storage Caverns
,”
Int. J. Heat Mass Transfer
,
55
(
21–22
), pp.
5616
5630
.
22.
Neuimin
,
V. M.
,
2014
, “
Methods of Evaluating Power Losses for Ventilation in Stages of Steam Turbines of TES
,”
Therm. Eng.
,
61
(
10
), pp.
765
770
.
23.
Petrovic
,
M.
, and
Riess
,
W.
,
1997
, “
Off-Design Flow Analysis of Low-Pressure Steam Turbines
,”
Proc. Inst. Mech. Eng.
, Part A,
211
(
3
), pp.
215
224
.
24.
Verein Deutscher Ingenieure
,
2006
,
VDI Wärmeatlas, Version 10
,
Springer Verlag
,
Berlin
.
25.
Lund
,
H.
,
Salgi
,
G.
,
Elmegaard
,
B.
, and
Andersen
,
A.N.
,
2009
, “
Optimal Operation Strategies of Compressed Air Energy Storage (CAES) on Electricity Spot Markets With Fluctuating Prices
,”
Appl. Therm. Eng.
,
29
(
5–6
), pp.
799
806
.
26.
Salgi
,
G.
, and
Lund
,
H.
,
2008
, “
System Behaviour of Compressed-Air Energy-Storage in Denmark With a High Penetration of Renewable Energy Sources
,”
Appl. Energy
,
85
(
4
), pp.
182
189
.
27.
Agentur für Erneuerbare Energien
,
2012
, “
Studienvergleich: Entwicklung der Investitionskosten neuer Kraftwerke
,” http://www.forschungsradar.de/uploads/media/AEE_Dossier_Studienvergleich_Investitionskosten_nov12.pdf
28.
Haslbeck
,
J. L.
,
Kuehn
,
N. J.
,
Lewis
,
E. G.
,
Pinkerton
,
L. L.
,
Simpson
,
J.
,
Turner
,
M. J.
,
Varghese
,
E.
, and
Woods
,
M. C.
,
2013
, “
Cost and Performance Baseline for Fossil Energy Plants. Volume 1: Bituminous Coal and Natural Gas to Electricity
,” US Department of Energy, Pittsburgh, PA, http://www.netl.doe.gov/File%20Library/Research/Energy%20Analysis/OE/BitBase_FinRep_Rev2a-3_20130919_1.pdf
29.
Turnton
,
R.
,
Bailie
,
R. C.
,
Whiting
,
W. B.
, and
Shaeiwitz
,
J. A.
,
2012
,
Analysis, Synthesis and Design of Chemical Processes
,
4th ed.
,
Prentice Hall/Cloth
,
Upper Saddle River, NJ
.
30.
Fu
,
Z.
,
Lu
,
K.
, and
Zhu
,
Y.
,
2015
, “
Thermal System Analysis and Optimization of Large-Scale Compressed Air Energy Storage (CAES)
,”
Energies
,
8
(
8
), pp.
8873
8886
.
31.
European Energy Exchange
,
2016
, Leipzig, Germany, www.eex.com
32.
Bundesamt für Wirtschaft und Ausfuhrkontrolle
, 2016, “
Aufkommen und Export von Erdgas sowie die Entwicklung der Grenzübergangspreise ab 1991
,” Eschborn, Germany, http://www.bafa.de/SharedDocs/Downloads/DE/Energie/egas_aufkommen_export_1991.xls;jsessionid=9998A41F00D05CF6468E23E9F0D4525C.1_cid387?__blob=publicationFile&v=3
34.
Urbs-media
,
1993
, “
German Depreciation Tables for Power Plants
,” http://www.urbs.de/afa/change.htm?afa10.htm
35.
Mazloum
,
Y.
,
Sayah
,
H.
, and
Nemer
,
M.
,
2016
, “
Static and Dynamic Modeling Comparison of an Adiabatic Compressed Air Energy Storage System
,”
ASME J. Energy Resour. Technol.
,
138
(
6
), p.
062001
.
You do not currently have access to this content.