The direct heat exchange network (direct flow mixing network) and the indirect heat exchange network (exchanger network) are two of the elements that constitute a water network where heat and mass are transferred. When designing these systems, it is important to consider different aspects such as thermodynamics and equipment costs. This paper analyzes different design options within the framework of heuristic methodologies on a case study taken from the open literature. Two design methodologies are compared on the basis of exergy losses. It also enunciates a series of considerations in heuristic design for the heat and mass exchange networks. A very helpful tool in relation with the considerations set out herein is the composite curve; special focus will be given during its construction. This paper shows how to incorporate the exergy component in design seeking to minimize the thermal irreversibility.

References

References
1.
Savulescu
,
L.
,
Kim
,
J.-K.
, and
Smith
,
R.
,
2005
, “
Studies on Simultaneous Energy and Water Minimisation—Part I: Systems With No Water Re-Use
,”
Chem. Eng. Sci.
,
60
(
12
), pp.
3279
3290
.
2.
Savulescu
,
L.
,
Kim
,
J.-K.
, and
Smith
,
R.
,
2005
, “
Studies on Simultaneous Energy and Water Minimisation—Part II: Systems With Maximum Re-Use of Water
,”
Chem. Eng. Sci.
,
60
(
12
), pp.
3291
3308
.
3.
Polley
,
G. T.
,
Picón-Núñez
,
M.
, and
de Jesús López-Maciel
,
J.
,
2010
, “
Design of Water and Heat Recovery Networks for the Simultaneous Minimisation of Water and Energy Consumption
,”
Appl. Therm. Eng.
,
30
(
16
), pp.
2290
2299
.
4.
Martínez-Patiño
,
J.
,
Picón-Núñez
,
M.
,
Serra
,
L. M.
, and
Verda
,
V.
,
2012
, “
Systematic Approach for the Synthesis of Water and Energy Networks
,”
Appl. Therm. Eng.
,
48
, pp.
458
464
.
5.
Martínez-Patiño
,
J.
,
Picón-Núñez
,
M.
,
Serra
,
L. M.
, and
Verda
,
V.
,
2011
, “
Design of Water and Energy Networks Using Temperature–Concentration Diagrams
,”
Energy
,
36
(
6
), pp.
3888
3896
.
6.
Leewongtanawit
,
B.
, and
Kim
,
J. K.
,
2009
, “
Improving Energy Recovery for Water Minimisation
,”
Energy
,
34
(
7
), pp.
880
893
.
7.
Ahmetović
,
E.
,
Ibrić
,
N.
,
Kravanja
,
Z.
, and
Grossmann
,
I. E.
,
2015
, “
Water and Energy Integration: A Comprehensive Literature Review of Non-Isothermal Water Network Synthesis
,”
Comput. Chem. Eng.
,
82
, pp.
144
171
.
8.
Liang
,
Y.
, and
Hui
,
C. W.
,
2016
, “
A Shortcut Model for Energy Efficient Water Network Synthesis
,”
Appl. Therm. Eng.
,
96
, pp.
88
91
.
9.
Ahmetović
,
E.
,
Ibrić
,
N.
,
Kravanja
,
Z.
, and
Grossmann
, I
. E.
,
2015
, “
Water and Energy Integration: A Comprehensive Literature Review of Non-Isothermal Water Network Synthesis
,”
Comput. Chem. Eng.
,
82
, pp.
144
171
.
10.
El-Halwagi
,
M. M.
, and
Manousiouthakis
,
V.
,
1989
, “
Synthesis of Mass Exchange Networks
,”
AIChE J.
,
35
(
8
), pp.
1233
1244
.
11.
Sorin
,
M.
, and
Savulescu
,
L.
,
2004
, “
On Minimization of the Number of Heat Exchangers in Water Networks
,”
Heat Transfer Eng.
,
25
(
5
), pp.
30
38
.
12.
Bejan
,
A.
,
1982
,
Entropy Generation Through Heat and Fluid Flow
,
Wiley
,
New York
.
13.
Moran
,
M. J.
, and
Shapiro
,
H. N.
,
2006
,
Fundamental of Engineering Thermodynamics
,
5th ed.
,
Wiley
,
Chichester, UK
.
14.
Lior
,
N.
,
2016
, “
Exergy, Energy, and Gas Flow Analysis of Hydro-Fractured Shale Gas Extraction
,”
ASME J. Energy Resour. Technol.
,
138
(
1
), p. 061601.
15.
Boateng
,
A. A.
,
Mullen
,
C. A.
,
Osgood-Jacobs
,
L.
,
Carlson
,
P.
, and
Macken
,
N.
,
2012
, “
Mass Balance, Energy, and Exergy Analysis of Bio-Oil Production by Fast Pyrolysis
,”
ASME J. Energy Resour. Technol.
,
134
(
4
), p.
042001
.
16.
Dunbar
,
W. R.
,
Lior
,
N.
, and
Gaggioli
,
R. A.
,
1992
, “
The Component Equations of Energy and Exergy
,”
ASME J. Energy Resour. Technol.
,
114
(
1
), pp.
75
83
.
You do not currently have access to this content.