Prediction of differential pipe sticking (DPS) prior to occurrence, and taking preventive measures, is one of the best approaches to minimize the risk of DPS. In this paper, probabilistic artificial neural network (ANN) has been introduced. Moreover, conventional ANNs through multilayer perceptron (MLP) and radial basis function (RBF) have been used to compare with probabilistic ANN. Furthermore, to determine the most important parameters, forward selection sensitivity analysis has been applied. By predicting DPS and performing sensitivity analysis, it is possible to improve well planning process. The results from the analyses have shown the better potentiality of the probabilistic ANN in this area.

References

References
1.
Santos
,
H.
,
2000
, “
Differentially Stuck Pipe: Early Diagnostic and Solution
,”
IADC/SPE Drilling Conference
,
New Orleans, LA
,
Feb. 23–25
, Paper No. SPE 59127-MS.
2.
Dayawant
,
K. P.
,
Mangla
,
V. K.
,
Joshi
,
N. P.
,
Tewari
,
P. P.
, and
Bose
,
U. N.
,
2000
, “
A New Approach Solves Differential Sticking Problems in Geleki and Ahmedabad Fields
,”
SPE Annual Technical Conference and Exhibition
,
Dallas, TX
,
Oct. 1–4
, Paper No. SPE 63055-MS.
3.
Rostami
,
H.
, and
Khaksar Manshad
,
A.
,
2015
, “
A New Support Vector Machine and Artificial Neural Networks for Prediction of Stuck Pipe in Drilling of Oil Fields
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
024502
.
4.
Sorgun
,
M.
, and
Ulker
,
E.
,
2015
, “
Modeling and Experimental Study of Solid–Liquid Two-Phase Pressure Drop in Horizontal Wellbores With Pipe Rotation
,”
ASME J. Energy Resour. Technol.
,
138
(
2
), p.
022902
.
5.
GhasemiKafrudi
,
E.
, and
Hashemabadi
,
S. H.
,
2015
, “
Numerical Study on Effects of Drilling Mud Rheological Properties on the Transport of Drilling Cuttings
,”
ASME J. Energy Resour. Technol.
,
138
(
1
), p.
012902
.
6.
Jahanbakhshi
,
R.
,
Keshavarzi
,
R.
,
Aliyari Shoorehdeli
,
M.
, and
Emamzadeh
,
A.
,
2012
, “
Intelligent Prediction of Differential Pipe Sticking by Support Vector Machine Compared With Conventional Artificial Neural Networks: An Example of Iranian Offshore Oil Fields
,”
SPE Drill. Completion
,
27
(
4
), pp.
586
596
.
7.
Samuel
,
R.
, and
Yao
,
D.
,
2013
, “
DrillString Vibration With Hole-Enlarging Tools: Analysis and Avoidance
,”
ASME J. Energy Resour. Technol.
,
135
(
3
), p.
032904
.
8.
Outmans
,
H. D.
,
1957
, “
Mechanics of Differential Pressure Sticking of Drill Collars. Petroleum Transactions
,”
Annual Fall Meeting of Southern California Petroleum Section
,
Los Angeles, CA
,
Oct. 17–18
, AIME, Englewood, CO, Vol.
213
, pp.
265
274
.
9.
Dupriest
,
F. E.
,
Elks
,
W. C.
, Jr.
, and
Ottesen
,
S.
,
2010
, “
Design Methodology and Operational Practices Eliminate Differential Sticking
,”
IADC/SPE Drilling Conference and Exhibition
,
New Orleans, LA
,
Feb. 2–4
, Paper No. SPE 128129-MS.
10.
Miri
,
R.
,
Sampaio
,
J.
,
Afshar
,
M.
, and
Lourenco
,
A.
,
2007
, “
Development of Artificial Neural Networks to Predict Differential Pipe Sticking in Iranian Offshore Oil Fields
,”
International Oil Conference and Exhibition
,
Veracruz, Mexico
,
June 27–30
, Paper No. SPE 108500.
11.
Siruvuri
,
C.
,
Nagarakanti
,
S.
, and
Samuel
,
R.
,
2006
, “
Stuck Pipe Prediction and Avoidance: A Convolutional Neural Network Approach
,”
IADC/SPE Drilling Conference
,
Miami, FL
,
Feb. 21–23
, Paper No. IADC/SPE 98378.
12.
Murillo
,
A.
,
Neuman
,
J.
, and
Samuel
,
R.
,
2009
, “
Pipe Sticking Prediction and Avoidance Using Adaptive Fuzzy Logic and Neural Network Modeling
,”
SPE Production and Operations Symposium
,
Oklahoma City, OK
,
Apr. 4–8
, Paper No. SPE 120128.
13.
Shadizadeh
,
S. R.
,
Karimi
,
F.
, and
Zoveidavianpoor
,
M.
,
2010
, “
Drilling Stuck Pipe Prediction in Iranian Oil Fields: An Artificial Neural Network Approach
,”
Iran. J. Chem. Eng.
,
7
(
4
), pp.
29
41
.
14.
Jahanbakhsi
,
R.
,
Emamzadeh
,
S. A.
,
Aliyari Shoorehdeli
,
M.
,
Hashemi
,
A.
, and
Miri
,
R.
,
2011
, “
Prediction of Differential Pipe Sticking by Using Probabilistic Artificial Neural Network in Offshore Gulf Oil Fields
,”
Pet. Res.
,
21
(
65
), pp.
47
57
(in Persian).
15.
Wang
,
Y.
, and
Salehi
,
S.
,
2015
, “
Application of Real-Time Field Data to Optimize Drilling Hydraulics Using Neural Network Approach
,”
ASME J. Energy Resour. Technol.
,
137
(
6
), p.
062903
.
16.
Rabia
,
H.
,
1985
,
Oil Well Drilling Engineering: Principles and Practice
,
Graham & Trotman
,
Gaithersburg, MD
, Chap. 12.
17.
Reid
,
P. I.
,
Meeten
,
G. H.
,
Way
,
P. W.
,
Clark
,
P.
,
Chambers
,
B. D.
,
Gilmour
,
A.
, and
Sanders
,
M. W.
,
2000
, “
Differential-Sticking Mechanisms and a Simple Wellsite Test for Monitoring and Optimizing Drilling Mud Properties
,”
SPE Drill. Completion
,
15
(
2
), pp.
97
104
.
18.
Malallah
,
A.
, and
Nashawi
,
I. S.
,
2005
, “
Estimating the Fracture Gradient Coefficient Using Neural Networks for a Field in the Middle East
,”
J. Pet. Sci. Eng.
,
49
, pp.
193
211
.
19.
Sinha
,
S. K.
, and
Fieguth
,
P. W.
,
2006
, “
Neuro-Fuzzy Network for the Classification of Buried Pipe Defects
,”
J. Autom. Constr.
,
15
(
2006
), pp.
73
83
.
20.
Jahanbakhshi
,
R.
,
Keshavarzi
,
R.
, and
Azinfar
,
M. J.
,
2011
, “
Intelligent Prediction of Uniaxial Compressive Strength for Sandstone
,”
45th U.S. Rock Mechanics/Geomechanics Symposium
,
San Francisco, CA
,
June 26–29
, Paper No. ARMA 11-189.
21.
Ramgulam
,
A.
,
Ertekin
,
T.
, and
Flemings
,
P. B.
,
2007
, “
Utilization of Artificial Neural Networks in the Optimization of History Matching
,”
SPE Latin American and Caribbean Petroleum Engineering Conference
,
Buenos Aires, Argentina
,
Apr. 15–18
, Paper No. SPE 107468.
22.
Demuth
,
H.
, and
Beale
,
M.
,
1998
, “
Neural Network Toolbox for Use With MATLAB—User's Guide
,”
Fifth Printing, Version 3, MathWorks, Inc.
,
Natick, MA
.
23.
Leonard
,
J. A.
, and
Karamer
,
M. A.
,
1991
, “
Radial Basis Function Networks for Classifying Process Faults
,”
IEEE Control Syst. Mag.
,
11
(
3
), pp.
31
38
.
24.
Fawcett
,
T.
,
2006
, “
An Introduction to ROC Analysis
,”
Pattern Recognit. Lett. J.
,
27
(
2006
), pp.
861
874
.
You do not currently have access to this content.