One of the main reservoir development plans is to find optimal locations for drilling new wells in order to optimize cumulative oil recovery. Reservoir simulation is a necessary tool to study different configurations of well locations to investigate the future of the reservoir and determine the optimal places for well drilling. Conventional well-known numerical methods require modern hardware for the simulation and optimization of large reservoirs. Simulation of such heterogeneous reservoirs with complex geological structures with the streamline-based simulation method is more efficient than the common simulation techniques. Also, this method by calculation of a new parameter called “time-of-flight” (TOF) offers a very useful tool to engineers. In the present study, TOF and distribution of streamlines are used to define a novel function which can be used as the objective function in an optimization problem to determine the optimal locations of injectors and producers in waterflooding projects. This new function which is called “well location assessment based on TOF” (WATOF) has this advantage that can be computed without full time simulation, in contrast with the cumulative oil production (COP) function. WATOF is employed for optimal well placement using the particle swarm optimization (PSO) approach, and its results are compared with those of the same problem with COP function, which leads to satisfactory outcomes. Then, WATOF function is used in a hybrid approach to initialize PSO algorithm to maximize COP in order to find optimal locations of water injectors and oil producers. This method is tested and validated in different 2D problems, and finally, the 3D heterogeneous SPE-10 reservoir model is considered to search locations of wells. By using the new objective function and employing the hybrid method with the streamline simulator, optimal well placement projects can be improved remarkably.

References

References
1.
Yue
,
W.
, and
Yilin Wang
,
J.
,
2015
, “
Feasibility of Waterflooding for a Carbonate Oil Field Through Whole-Field Simulation Studies
,”
ASME J. Energy Resour. Technol.
,
137
(
6
), p.
064501
.
2.
Hirasaki
,
G.
,
Miller
,
C. A.
, and
Puerto
,
M.
,
2011
, “
Recent Advances in Surfactant EOR
,”
SPE J.
,
16
(
4
), pp.
889
907
.
3.
Hoffman
,
B. T.
, and
Shoaib
,
S.
,
2013
, “
CO2 Flooding to Increase Recovery for Unconventional Liquids-Rich Reservoirs
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
022801
.
4.
Lee
,
H.
,
Jin
,
J.
,
Shin
,
H.
, and
Choe
,
J.
,
2015
, “
Efficient Prediction of SAGD Productions Using Static Factor Clustering
,”
ASME J. Energy Resour. Technol.
,
137
(
3
), p.
032907
.
5.
Luo
,
S.
, and
Kelkar
,
M.
,
2012
, “
Infill-Drilling Potential in Tight Gas Reservoirs
,”
ASME J. Energy Resour. Technol.
,
135
(
1
), p.
013401
.
6.
Salmachi
,
A.
,
Sayyafzadeh
,
M.
, and
Haghighi
,
M.
,
2013
, “
Infill Well Placement Optimization in Coal Bed Methane Reservoirs Using Genetic Algorithm
,”
Fuel
,
111
, pp.
248
258
.
7.
Guyaguler
,
B.
, and
Horne
,
R.
,
2000
, “
Optimization of Well Placement
,”
ASME J. Energy Resour. Technol.
,
122
(
2
), pp.
64
70
.
8.
Mamghaderi
,
A.
,
Bastami
,
A.
, and
Pourafshary
,
P.
,
2012
, “
Optimization of Waterflooding Performance in a Layered Reservoir Using a Combination of Capacitance-Resistive Model and Genetic Algorithm Method
,”
ASME J. Energy Resour. Technol.
,
135
(
1
), p.
013102
.
9.
Choobineh
,
M. J.
,
Siavashi
,
M.
, and
Nakhaee
,
A.
,
2015
, “
Optimization of Oil Production in Water Injection Process Using ABC and SQP Algorithms Employing Streamline Simulation Technique
,”
Modares Mech. Eng.
,
15
(
8
), pp.
227
238
.
10.
Dréo
,
J.
,
Pétrowski
,
A.
,
Siarry
,
A.
, and
Taillard
,
E.
,
2006
,
Metaheuristics for Hard Optimization: Methods and Case Studies
,
Springer
,
Berlin
.
11.
Kathiravan
,
R.
, and
Ganguli
,
R.
,
2007
, “
Strength Design of Composite Beam Using Gradient and Particle Swarm Optimization
,”
Compos. Struct.
,
81
(
4
), pp.
471
479
.
12.
Ebenhart
,
R.
, and
Kennedy
,
J.
,
1995
, “
Particle Swarm Optimization
,”
IEEE International Conference on Neural Networks
, Perth, Australia, pp.
1942
1948
.
13.
Fu
,
W.
,
Yang
,
X.
,
Wang
,
L.
, and
Yang
,
Y.
,
2015
, “
Feedwater Heating Allocation Optimization for Large Capacity Steam Turbine Unit Based on Particle Swarm Optimization
,”
ASME J. Energy Resour. Technol.
,
137
(
4
), p.
042005
.
14.
Liu
,
L.
, and
Liu
,
C.
,
2012
, “
A Novel Combined Particle Swarm Optimization and Genetic Algorithm MPPT Control Method for Multiple Photovoltaic Arrays at Partial Shading
,”
ASME J. Energy Resour. Technol.
,
135
(
1
), p.
012002
.
15.
Manshad
,
A. K.
,
Rostami
,
H.
,
Rezaei
,
H.
, and
Hosseini
,
S. M.
,
2015
, “
Application of Artificial Neural Network-Particle Swarm Optimization Algorithm for Prediction of Asphaltene Precipitation During Gas Injection Process and Comparison With Gaussian Process Algorithm
,”
ASME J. Energy Resour. Technol.
,
137
(
6
), p.
062904
.
16.
Zhang
,
L.
,
Zhang
,
K.
,
Chen
,
Y.
,
Li
,
M.
,
Yao
,
J.
,
Li
,
L.
, and
Lee
,
J.
,
2016
, “
Smart Well Pattern Optimization Using Gradient Algorithm
,”
ASME J. Energy Resour. Technol.
,
138
(
1
), p.
12901
.
17.
Derakhshan
,
S.
,
Tavaziani
,
A.
, and
Kasaeian
,
N.
,
2015
, “
Numerical Shape Optimization of a Wind Turbine Blades Using Artificial Bee Colony Algorithm
,”
ASME J. Energy Resour. Technol.
,
137
(
5
), p.
051210
.
18.
Mallick
,
R.
,
Ganguli
,
R.
, and
Bhat
,
M. S.
,
2015
, “
Robust Design of Multiple Trailing Edge Flaps for Helicopter Vibration Reduction: A Multi-Objective Bat Algorithm Approach
,”
Eng. Optim.
,
47
(
9
), pp.
1243
1263
.
19.
Dutta
,
R.
,
Ganguli
,
R.
, and
Mani
,
V.
,
2011
, “
Exploring Isospectral Spring–Mass Systems With Firefly Algorithm
,”
Proc. R. Soc. London, Ser. A
,
467
(
2135
), pp.
3222
3240
.
20.
Salmachi
,
A.
,
Bonyadi
,
M. R.
,
Sayyafzadeh
,
M.
, and
Haghighi
,
M.
,
2014
, “
Identification of Potential Locations for Well Placement in Developed Coal Bed Methane Reservoirs
,”
Int. J. Coal Geol.
,
131
, pp.
250
262
.
21.
Ozdogan
,
U.
, and
Horne
,
R. N.
,
2006
, “
Optimization of Well Placement Under Time-Dependent Uncertainty
,”
SPE Reserv. Eval. Eng.
,
9
(
2
), pp.
135
145
.
22.
Onwunalu
,
J. E.
,
2010
, “
Optimization of Field Development Using Particle Swarm Optimization and New Well Pattern Descriptions
,”
Ph.D. dissertation
,
Stanford University
, Stanford, CA.
23.
Datta-Gupta
,
A.
, and
King
,
M. J.
,
2007
,
Streamline Simulation: Theory and Practice
,
Society of Petroleum Engineers
,
Richardson, TX
.
24.
Siavashi
,
M.
,
Blunt
,
M. J.
,
Raisee
,
M.
, and
Pourafshary
,
P.
,
2014
, “
Three-Dimensional Streamline-Based Simulation of Non-Isothermal Two-Phase Flow in Heterogeneous Porous Media
,”
Comput. Fluids
,
103
, pp.
116
131
.
25.
Batycky
,
R. P.
,
Blunt
,
M. J.
, and
Thiele
,
M. R.
,
1997
, “
A 3D Field-Scale Streamline-Based Reservoir Simulator
,”
SPE Reserv. Eval. Eng.
,
12
(
4
), pp.
246
254
.
26.
Bhambri
,
P.
, and
Mohanty
,
K. K.
,
2008
, “
Two- and Three-Hydrocarbon Phase Streamline-Based Compositional Simulation of Gas Injections
,”
J. Pet. Sci. Eng.
,
62
(
1
), pp.
16
27
.
27.
Crane
,
M.
,
Bratvedt
,
F.
,
Bratvedt
,
K.
,
Childs
,
P.
, and
Olufsen
,
R.
,
2000
, “
A Fully Compositional Streamline Simulator
,”
SPE Annual Technical Conference and Exhibition
, Dallas, TX, Oct. 1–4, Paper No. SPE 63156.
28.
AlSofi
,
A. M.
, and
Blunt
,
M. J.
,
2010
, “
Streamline-Based Simulation of Non-Newtonian Polymer Flooding
,”
SPE J.
,
15
(
4
), pp.
895
905
.
29.
Di Donato
,
G.
, and
Blunt
,
M. J.
,
2004
, “
Streamline-Based Dual-Porosity Simulation of Reactive Transport and Flow in Fractured Reservoirs
,”
Water Resour. Res.
,
40
(
4
), p.
W04203
.
30.
Samier
,
P.
,
Quettier
,
L.
, and
Thiele
,
M.
,
2002
, “
Applications of Streamline Simulations to Reservoir Studies
,”
SPE Reserv. Eval. Eng.
,
5
(
4
), pp.
324
332
.
31.
Hosseini
,
S. A.
,
Kang
,
S.
, and
Datta-Gupta
,
A.
,
2010
, “
Qualitative Well Placement and Drainage Volume Calculations Based on Diffusive Time of Flight
,”
J. Pet. Sci. Eng.
,
75
(
1
), pp.
178
188
.
32.
Sayyafzadeh
,
M.
, and
Pourafshary
,
P.
,
2010
, “
Increasing Ultimate Oil Recovery by Infill Drilling and Converting Weak Production Wells to Injection Wells Using Streamline Simulation
,”
International Oil and Gas Conference and Exhibition in China
, Beijing, China, June 8–10, Paper No. SPE-132125-MS.
33.
Afshari
,
S.
,
Aminshahidy
,
B.
, and
Pishvaie
,
M. R.
,
2011
, “
Application of an Improved Harmony Search Algorithm in Well Placement Optimization Using Streamline Simulation
,”
J. Pet. Sci. Eng.
,
78
(
3
), pp.
664
678
.
34.
Taware
,
S. V.
,
Park
,
H.
,
Datta-Gupta
,
A.
,
Bhattacharya
,
S.
,
Tomar
,
A. K.
,
Kumar
,
M.
, and
Rao
,
H. S.
,
2012
, “
Well Placement Optimization in a Mature Carbonate Waterflood Using Streamline-Based Quality Maps
,”
SPE Oil and Gas India Conference and Exhibition
, Mumbai, India, Mar. 28–30, Paper No. SPE-155055-MS.
35.
Raniolo
,
S.
,
Bilancio
,
D.
,
Dovera
,
L.
,
Mezzapesa
,
D.
, and
Galibert
,
S.
,
2013
, “
Multiple History Matching and Well Placement Optimisation in a Mature Field Using a Streamline Approach
,”
International Petroleum Technology Conference
,
Beijing
,
China
, Mar. 26–28, Paper No. IPTC-16642.
36.
Thiele
,
M. R.
,
Batycky
,
R. P.
, and
Fenwick
,
D. H.
,
2010
, “
Streamline Simulation for Modern Reservoir-Engineering Workflows
,”
J. Pet. Technol.
,
62
(
1
), pp.
64
70
.
37.
Siavashi
,
M.
,
Pourafshary
,
P.
, and
Raisee
,
M.
,
2012
, “
Application of Space–Time Conservation Element and Solution Element Method in Streamline Simulation
,”
J. Pet. Sci. Eng.
,
96–97
, pp.
58
67
.
38.
Christie
,
M. A.
, and
Blunt
,
M. J.
,
2001
, “
Tenth SPE Comparative Solution Project: A Comparison of Upscaling Techniques
,”
SPE Reserv. Eval. Eng.
,
4
(
4
), pp.
308
317
.
39.
Thiele
,
M. R.
,
Batycky
,
R. P.
, and
Orr
,
J.
,
1996
, “
Simulating Flow in Heterogeneous Systems Using Streamtubes and Streamlines
,”
SPE Reserv. Eval. Eng.
,
11
(
1
), pp.
5
12
.
40.
Pollock
,
D. W.
,
1988
, “
Semianalytical Computation of Path Lines for Finite-Difference Models
,”
Groundwater
,
26
(
6
), pp.
743
750
.
41.
Bratvedt
,
F.
,
Gimse
,
T.
, and
Tegnander
,
C.
,
1996
, “
Streamline Computations for Porous Media Flow Including Gravity
,”
Transp. Porous Media
,
25
(
1
), pp.
63
78
.
42.
Beraldo
, V
. T.
,
Blunt
,
M. J.
, and
Schiozer
,
D. J.
,
2009
, “
Compressible Streamline-Based Simulation With Changes in Oil Composition
,”
SPE Reserv. Eval. Eng.
,
12
(
6
), pp.
963
973
.
43.
Lazaro Vallejo
,
L.
,
Leahy
,
M. J.
,
Dance
,
T.
, and
LaForce
,
T. C.
,
2011
, “
New Phase Behavior Algorithm for Simulation of CO2 Storage
,”
SPE Reservoir Simulation Symposium
, The Woodlands, TX, Feb. 21–23, Paper No. SPE-141734.
44.
Ertekin
,
T.
,
Abou-Kassem
,
J. H.
, and
King
,
G. R.
,
2001
,
Basic Applied Reservoir Simulation
,
Society of Petroleum Engineers
,
Richardson, TX
.
45.
Onwunalu
,
J. E.
, and
Durlofsky
,
L. J.
,
2010
, “
Application of a Particle Swarm Optimization Algorithm for Determining Optimum Well Location and Type
,”
Comput. Geosci.
,
14
(
1
), pp.
183
198
.
46.
Shi
,
Y.
, and
Eberhart
,
R.
,
1998
, “
A Modified Particle Swarm Optimizer
,”
IEEE World Congress on Computational Intelligence
, pp.
69
73
.
47.
Engelbrecht
,
A. P.
,
2006
,
Fundamentals of Computational Swarm Intelligence
,
Wiley
,
Hoboken, NJ
.
48.
Clerc
,
M.
, and
Kennedy
,
J.
,
2002
, “
The Particle Swarm-Explosion, Stability, and Convergence in a Multidimensional Complex Space
,”
IEEE Trans. Evol. Comput.
,
6
(
1
), pp.
58
73
.
49.
Alhuthali
,
A.
,
Oyerinde
,
A.
, and
Datta-Gupta
,
A.
,
2007
, “
Optimal Waterflood Management Using Rate Control
,”
SPE Reserv. Eval. Eng.
,
10
(
5
), pp.
539
551
.
You do not currently have access to this content.