Recently developed laboratory and numerical techniques reveal that the very thin, near-wall (assumed) “laminar” fluid layer, an essential feature of all turbulent flow conditions, houses a world of identifiable jetlike structures including bursts generated from the near-wall regions and lumps of fluids projected back onto the wall zones. This activity, identified as “coherent structures” (CS), is recognized as an important mechanism for radial mass transport and energy dissipation, particularly in near-wall or fluid–bed zones. Buoyancy-, adhesion-, hydrodynamic-, and CS-related updraft forces act on particles positioned in the fluid–bed interface zone. Depending on the particle nature, bulk fluid properties, and transport velocity, three pairs of forces were identified corresponding to the equilibrium condition of deposit particles in each of the three size ranges with respect to the onset of entrainment into the bulk flow. This mechanistic approach using a set of force equilibrium equations to assess the potential entrainment of particles was first suggested in 1980 by Phillips and was later (2006) applied by Toma and a research team from ARC and PETRONAS to explain the aging of wall-deposit layer occurring during waxy crude transportation as an effect of size-selective removal of paraffin crystals formed from a mixture of crystalized alkanes. The merit of this paper, regarded as an extension of the 2006 publication, is to introduce a more general selective extraction rate function that enables calculations of both the rate of paraffin aging and size alteration of any fine, polydisperse particulate matter exposed to bulk turbulent flow, gas or liquid. Without any adjustment of the process or physical constants, the modeling results presented in this paper compared satisfactorily with the experimental results obtained independently by the Texaco Research (aging of waxy crude) and laboratory data from the University of Alberta on the effect of size-selective extraction of fine sand or glass beads (GB) initially deposited on the bottom of a pipe and exposed to a turbulent bulk flow of water. An overarching objective of this paper is to stir interest in mechanistic modeling and prediction of size-selective radial transport and separation for a broad range of industrial and environmental applications and studies and specifically in the recognition and use of burst-sweep CS structures for calculating radial transport of small particle sizes, particularly in near-interface zones exposed to turbulent flow conditions.

References

References
1.
Leach
,
R.
,
Greeley
,
R.
, and
Pollack
,
J.
,
1989
, “
Saltation Thresholds and Entrainment of Fine Particles at Earth and Martian Pressures
,” Ames Res. Center, Moffat Field, CA, NASA Report No. A-89136.
2.
Phillips
,
M.
,
1984
, “
Threshold Wind Velocity for Particle Entrainment at Sub-Atmospheric Pressures as on the Planet Mars
,”
Atmos. Environ.
,
18
(
4
), pp.
831
835
.
3.
Toma
,
P.
,
Ivory
,
J.
,
Korpany
,
G.
,
deRocco
,
M.
,
Goss
,
C.
,
Holloway
,
L.
, and
Ibrahim
,
J.
,
2006
, “
A Two-Layer Paraffin Deposition Structure Used to Improve the Assessment of Laboratory and Field Observations
,”
ASME J. Energy Res. Technol.
,
128
(
3
), pp.
49
59
.
4.
Cleaver
,
J. W.
, and
Yates
,
B.
,
1976
, “
The Effect of Re-Entrainment on Particle Deposition
,”
Chem. Eng. Sci.
,
31
(
2
), pp.
147
151
.
5.
Phillips
,
M.
,
1980
, “
A Force Balance Model for Particle Entrainment Into a Fluid Stream
,”
J. Appl. Phys.
,
13
, pp.
231
233
.
6.
Bagnold
,
R. A.
,
1941
,
The Physics of Blown Sand and Desert Dunes
,
Dover Publication
,
Mineola, NY
.
7.
Zimon
,
A.
,
1982
,
Adhesion of Dust and Powder
,
Springer
,
New York
.
8.
Robinson
,
S. K.
,
1991
, “
Coherent Motions in the Turbulent Boundary Layer
,”
Annu. Rev. Fluid Mech.
,
23
(
1
), pp.
601
639
.
9.
Zeinali
,
H.
,
Toma
,
P.
, and
Kuru
,
E.
,
2012
, “
Effect of Near-Wall Turbulence on Selective Removal of Particles From Sand Beds Deposited in Pipelines
,”
ASME J. Energy Res. Technol.
,
134
(
2
), pp.
16
25
.
10.
Hsu
,
J. C.
,
Santamaria
,
M. M.
, and
Brubaker
,
J. P.
,
1994
, “
Wax Deposition of Waxy Live Crudes Under Turbulent Flow Conditions
,” SPE Paper No. 28480.
11.
Toma
,
P.
,
Harris
,
P.
, and
Korpany
,
G.
,
1994
, “
Sand Transportation in Long Horizontal Wells Practical Methods for Reducing the Impact
,”
ASME
Paper No. 94-PET-3.
12.
Ziskind
,
G.
,
2006
, “
Particle Resuspension From Surfaces: Revisited and Re-Evaluated
,”
Rev. Chem. Eng.
,
22
, pp.
1
123
.
13.
Ziskind
,
G.
,
Fichman
,
M.
, and
Gutfinger
,
C.
,
1995
, “
Resuspension of Particulates From Surfaces to Turbulent Flows: Review and Analysis
,”
J. Aerosol Sci.
,
26
(
4
), pp.
613
644
.
14.
Hamouda
,
A. A.
, and
Davidsen
,
S.
,
1995
, “
An Approach for Simulation of Paraffin Deposition in Pipelines
,” SPE Paper No. 28966.
You do not currently have access to this content.