This work investigates the laminar flame speed, SN, of gas-to-liquid (GTL) fuel and its 50–50% by volume blends with conventional diesel, in a cylindrical bomb capable of measuring SN at different initial temperatures and equivalence ratios at ambient pressure. SN was measured by analysing the pressure signals after combustion detected by a pressure transducer mounted on the bomb. Direct visualization has also been conducted to observe the ignition and flame propagation. It was found that pure GTL fuel has the highest SN near stoichiometric conditions, which is about 88.3 cm/s. However, at lean and rich mixtures, SN of GTL is slightly lower than that of the conventional diesel. The blended fuel has the lowest SN at lean and rich mixture conditions comparing with those of GTL and diesel fuels. Studying the effect of increasing the initial temperature on SN revealed that SN of the three tested fuels increases with the increase in the initial temperature almost linearly. However, the blended fuel has the lowest SN at the highest temperature, about 89.7 cm/s at 250 °C.

References

References
1.
Radhi
,
H.
,
2009
, “
Evaluating the Potential Impact of Global Warming on the UAE Residential Buildings - A Contribution to Reduce the CO2 Emissions
,”
Build. Environ.
,
44
(
12
), pp.
2451
2462
.
2.
Oil and Gas IQ
,
2012
, “
Gas to Liquids—6 Ground-Breaking GTL Megaprojects
,”
Gas-to-Liquids Conference
, London, UK, Oct. 4–5.
3.
Alleman
,
T. L.
, and
McCormick
,
R. L.
,
2003
, “
Fischer–Tropsch Diesel Fuels–Properties and Exhaust Emissions: A Literature Review
,”
SAE
Paper No. 2003-01-0763.
4.
Schaberg
,
P. W.
,
Botha
,
J.
,
Schnell
,
M.
,
Herrmann
,
H. O.
,
Keppeler
,
S.
, and
Friess
,
W.
,
2007
, “
HSDI Diesel Engine Optimisation for GTL Diesel Fuel
,”
SAE
Paper No. 2007-01-0027.
5.
Szybist
,
J. P.
,
Kirby
,
S. R.
, and
Boehman
,
A. L.
,
2005
, “
NOx Emissions of Alternative Diesel Fuels: A Comparative Analysis of Biodiesel and FT Diesel
,”
Energy Fuels
,
19
(
4
), pp.
1484
1492
.
6.
Sajjad
,
H.
,
Masjuki
,
H. H.
,
Varman
,
M.
,
Kalam
,
M. A.
,
Arbab
,
M. I.
,
Imtenan
,
S.
, and
Ashrafur Rahman
,
S. M.
,
2014
, “
Engine Combustion, Performance and Emission Characteristics of Gas-to-Liquid (GTL) Fuels and Its Blends With Diesel and Bio-Diesel
,”
Renewable Sustainable Energy Rev.
,
30
, pp.
961
986
.
7.
Andrews
,
G.
, and
Bradley
,
D.
,
1972
, Determination of Burning Velocities: A Critical Review,
Combust. Flame
,
18
(
1
), pp.
133
153
.
8.
Romero
,
D.
,
Parthasarathy
,
R. N.
, and
Gollahalli
,
S. R.
,
2014
, “
Laminar Flame Characteristics of Partially Premixed Prevaporized Palm Methyl Ester and Diesel Flames
,”
ASME J. Energy Resour. Technol.
,
136
(3), p. 032204.
9.
Dam
,
B.
,
Ardha
,
V.
, and
Choudhuri
,
A.
,
2010
, “
Laminar Flame Velocity of Syngas Fuels
,”
ASME J. Energy Resour. Technol.
,
132
(
4
), p.
044501
.
10.
Almansour
,
B.
,
Thompson
,
L.
,
Lopez
,
J.
,
Barari
,
G.
, and
Vasu
,
S. S.
,
2016
, “
Laser Ignition and Flame Speed Measurements in Oxy-Methane Mixtures Diluted With CO2
,”
ASME J. Energy Resour. Technol.
,
138
(
3
), p.
032201
.
11.
Rokni
,
E.
,
Moghaddas
,
A.
,
Askari
,
O.
, and
Metghalchi
,
H.
,
2015
, “
Measurement of Laminar Burning Speeds and Investigation of Flame Stability of Acetylene (C2H2)/Air Mixtures
,”
ASME J. Energy Resour. Technol.
,
137
(1), p.
012204
.
12.
Moghaddas
,
A.
,
Bennett
,
C.
,
Eisazadeh-Far
,
K.
, and
Metghalchi
,
H.
,
2012
, “
Measurement of Laminar Burning Speeds and Determination of Onset of Auto-Ignition of Jet-A/Air and Jet Propellant-8/Air Mixtures in a Constant Volume Spherical Chamber
,”
ASME J. Energy Resour. Technol.
,
134
(
2
), p.
022205
.
13.
Moghaddas
,
A.
,
Eisazadeh-Far
,
K.
, and
Metghalchi
,
H.
,
2012
, “
Laminar Burning Speed Measurement of Premixed n-Decane/Air Mixtures Using Spherically Expanding Flames at High Temperatures and Pressures
,”
Combust. Flame
,
159
(
4
), pp.
1437
1443
.
14.
Eisazadeh-Far
,
K.
,
Moghaddas
,
A.
,
Al-Mulki
,
J.
, and
Metghalchi
,
H.
,
2011
, “
Laminar Burning Speeds of Ethanol/Air/Diluent Mixtures
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
1021
1027
.
15.
Parsinejad
,
F.
,
Arcari
,
C.
, and
Merghalchi
,
H.
,
2006
, “
Flame Structure and Burning Speed of JP-10 Air Mixtures
,”
Combust. Sci. Technol.
,
178
(
5
), pp.
975
1000
.
16.
Elia
,
M.
,
Ulinski
,
M.
, and
Metghalchi
,
M.
,
2001
, “
Laminar Burning Velocity of Methane-Air-Diluent Mixtures
,”
ASME J. Eng. Gas Turbines Power
,
123
(
1
), pp.
190
196
.
17.
Rahim
,
F.
,
Elia
,
M.
,
Ulinski
,
M.
, and
Metghalchi
,
M.
,
2002
, “
Burning Velocity Measurements of Methane–Oxygen–Argon Mixtures and an Application to Extend Methane-Air Burning Velocity Measurements
,”
Int. J. Engine Res.
,
3
(
2
), pp.
81
92
.
18.
Parsinejad
,
F.
,
Arcari
,
C.
, and
Metghalchi
,
H.
,
2006
, “
Flame Structure and Burning Speed of JP-10 Air Mixtures
,”
Combust. Sci. Technol.
,
178
(
5
), pp.
975
1000
.
19.
Parsinejad
,
F.
,
Keck
,
J. C.
, and
Metghalchi
,
H.
,
2007
, “
On the Location of Flame Edge in Shadowgraph Pictures of Spherical Flames; Experimental and Theoretical Study
,”
Exp. Fluids
,
43
(
6
), pp.
887
894
.
20.
Eisazadeh-Far
,
K.
,
Parsinejad
,
F.
, and
Metghalchi
,
H.
,
2010
, “
Flame Structure and Laminar Burning Speeds of JP-8/Air Premixed Mixtures at High Temperatures and Pressures
,”
Fuel
,
89
(5), pp.
1041
1049
.
21.
Eisazadeh-Far
,
K.
,
Parsinejad
,
F.
,
Metghalchi
,
H.
, and
Keck
,
J. C.
,
2010
, “
On Flame Kernel Formation and Propagation in Premixed Gases
,”
Combust. Flame
,
157
(
12
), pp.
2211
2221
.
22.
Eisazadeh-Far
,
K.
,
Moghaddas
,
A.
,
Rahim
,
F.
, and
Metghalchi
,
H.
,
2010
, “
Burning Speed and Entropy Production Calculation of a Transient Expanding Spherical Laminar Flame Using a Thermodynamic Model
,”
Entropy
,
12
(
12
), pp.
2485
2496
.
23.
Eisazadeh-Far
,
K.
,
Moghaddas
,
A.
,
Metghalchi
,
H.
, and
Keck
,
J. C.
,
2011
, “
The Effect of Diluent on Flame Structure and Laminar Burning Speed of JP-8/Oxidizer/Diluent Premixed Flames
,”
Fuel
,
90
(
4
), pp.
1476
1486
.
24.
Bradley
,
D.
, and
Mitcheson
,
A.
,
1976
, “
Mathematical Solutions for Explosions in Spherical Vessels
,”
Combust. Flame
,
26
, pp.
201
217
.
25.
Dahoe
,
A.
,
Zevenbergen
,
J.
,
Lemkowitz
,
S.
, and
Scarlett
,
B.
,
1996
, “
Dust Explosion in Spherical Vessels: The Role of Flame Thickness in the Validity of the Cube-Root Law
,”
J. Loss Prevent Process Ind.
,
9
(
1
), pp.
33
44
.
26.
Rallis
,
C.
,
Garforth
,
A.
, and
Steinz
,
J.
,
1965
, “
Laminar Burning Velocity of Acetylene–Air Mixtures by the Constant Volume Method: Dependence on Mixture Composition, Pressure and Temperature
,”
Combust. Flame
,
9
(4), pp.
354
356
.
27.
Babkin
,
V.
, and
Kononenko
,
Y.
,
1967
, “
Equations for Determining Normal Flame Velocity in a Constant-Volume Spherical Bomb
,”
Combust. Flame
,
3
(
2
), pp.
168
171
.
28.
Metghalchi
,
M.
, and
Keck
,
J.
,
1982
, “
Burning Velocities of Mixtures of Air With Methanol, Isooctane, and Indolene at High Pressure and Temperature
,”
Combust. Flame
,
48
, pp.
191
210
.
29.
Metghalchi
,
M.
, and
Keck
,
J. C.
,
1980
, “
Laminar Burning Velocity of Propane-Air Mixtures at High Temperature and Pressure
,”
Combust. Flame
,
38
, pp.
143
154
.
30.
Rahim
,
F.
,
Eisazadeh Far
,
K.
,
Parsinejad
,
F.
,
Adrews
,
R. J.
, and
Metghalchi
,
H.
,
2008
, “
A Thermodynamic Model to Calculate Burning Speed of Methane-Air- Diluent Mixtures
,”
Int. J. Thermodyn.
,
11
(
4
), pp.
151
160
.
31.
Eisazadeh-Far
,
K.
,
Metghalchi
,
H.
, and
Keck
,
J. C.
,
2011
, “
Thermodynamic Properties of Ionized Gases at High Temperatures
,”
ASME J. Energy Resour. Technol.
,
133
(2), p. 022201.
32.
Askari
,
O.
,
Moghaddas
,
A.
,
Alholm
,
A.
,
Vein
,
K.
,
Alhazmi
,
B.
, and
Metghalchi
,
H.
,
2016
, “
Laminar Burning Speed Measurement and Flame Instability Study of H2/CO/Air Mixtures at High Temperatures and Pressures Using a Novel Multi- Shell Model
,”
Combust. Flames
,
168
, pp.
20
31
.
33.
Lewis
,
B.
, and
Von Elbe
,
G.
,
1987
,
Combustion, Flames and Explosions of Gases
,
3rd ed.
,
Academic Press
,
Orlando, FL
.
34.
Radwan
,
M.
,
Ismail
,
M.
,
Elfeky
,
S.
, and
Abu-Elyazeed
,
O.
,
2006
, “
Jojoba Methyl Ester as a Diesel Fuel Substitute: Preparation and Characterization
,”
Appl. Therm. Eng.
,
27
(2–3), pp.
314
322
.
35.
Huzayyin
,
A.
,
Moneib
,
H.
,
Shehatta
,
M.
, and
Attia
,
A.
,
2008
, “
Laminar Burning Velocity and Explosion Index of LPG–Air and Propane–Air Mixtures
,”
Fuel
,
87
(
1
), pp.
39
57
.
36.
Bradley
,
D.
,
Lawes
,
M.
, and
Mansour
,
M.
,
2009
, “
Explosion Bomb Measurements of Ethanol–Air Laminar Gaseous Flame Characteristics at Pressures up to 1.4 MPa
,”
Combust. Flame
,
156
(
7
), pp.
1462
1470
.
37.
Bradley
,
D.
,
Hicks
,
R. A.
,
Lawes
,
M.
,
Sheppard
,
C. G. W.
, and
Woolley
,
R.
,
1998
, “
The Measurement of Laminar Burning Velocities and Markstein Numbers for Iso-Octane–Air and Iso-Octane–n-Heptane–Air Mixtures at Elevated Temperatures and Pressures in an Explosion Bomb
,”
Combust. Flame
,
115
(
2
), pp.
126
144
.
38.
Ibrahim
,
A. S.
, and
Ahmed
,
S. F.
,
2015
, “
Measurements of Laminar Flame Speeds of Alternative Gaseous Fuel Mixtures
,”
ASME J. Energy Resour. Technol.
,
137
(
3
), p.
032209
.
39.
Askari
,
O.
,
Metghalchi
,
H.
,
Hannani
,
S. K.
,
Moghaddas
,
A.
,
Ebrahimi
,
R.
, and
Hemmati
,
H.
,
2012
, “
Fundamental Study of Spray and Partially Premixed Combustion of Methane/Air Mixture
,”
ASME J. Energy Resour. Technol.
,
135
(
2
), p.
021001
.
40.
Askari
,
O.
,
Metghalchi
,
H.
,
Hannani
,
S. K.
,
Hemmati
,
H.
, and
Ebrahimi
,
R.
,
2014
, “
Lean Partially Premixed Combustion Investigation of Methane Direct-Injection Under Different Characteristic Parameters
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p.
022202
.
41.
Chong
,
C. T.
, and
Hochgreb
,
S.
,
2011
, “
Measurements of Laminar Flame Speeds of Liquid Fuels: Jet-A1, Diesel, Palm Methyl Esters and Blends Using Particle Imaging Velocimetry (PIV)
,”
Proc. Combust. Inst.
,
33
(
1
), pp.
979
986
.
42.
Ahmed
,
S. F.
,
2014
, “
The Probabilistic Nature of Ignition in Turbulent Highly-Strained Lean Premixed Methane-Air Flames for Low-Emission Engines
,”
Fuel
,
134
, pp.
97
106
.
43.
Li
,
B.
,
Liu
,
N.
,
Zhao
,
R.
,
Zhang
,
H.
, and
Egolfopoulos
,
F. N.
,
2013
, “
Flame Propagation of Mixtures of Air With High Molecular Weight Neat Hydrocarbons and Practical Jet and Diesel Fuels
,”
Proc. Combust. Inst.
,
34
(
1
), pp.
727
733
.
44.
Chen
,
Z.
,
Burke
,
M. P.
, and
Ju
,
Y.
,
2009
, “
Effects of Compression and Stretch on the Determination of Laminar Flame Speeds Using Propagating Spherical Flames
,”
Combust. Theory Modell.
,
13
(
2
), pp.
343
364
.
45.
Davis
,
S. G.
, and
Law
,
C. K.
,
1998
, “
Determination of and Fuel Structure Effects on Laminar Flame Speeds of C1 to C8 Hydrocarbons
,”
Combust. Sci. Technol.
,
140
(
1
), pp.
427
449
.
46.
Davis
,
S. G.
,
Wang
,
H.
,
Breinsky
,
K.
, and
Law
,
C. K.
,
1996
, “
Laminar Flame Speeds and Oxidation Kinetics of Benzene–Air and Toluene–Air Flames
,”
Proc. Combust. Inst.
,
26
(
1
), pp.
1025
1033
.
You do not currently have access to this content.