Compression ignition (CI) engines are facing strong restrictive emission norms globally, which demand extremely low oxides of nitrogen (NOx) and particulate matter (PM) emissions. Homogeneous charge compression ignition (HCCI) engine is a very attractive solution to meet these stringent emission challenges due to its capability to simultaneously reduce NOx and PM. In this study, HCCI combustion was investigated using different test fuels such as diesoline (15% v/v gasoline with diesel), diesohol (15% v/v ethanol with diesel), and diesosene (15% v/v kerosene with diesel) vis-a-vis baseline mineral diesel. A dedicated fuel vaporizer was used for homogeneous fuel–air mixture preparation. The experiments were performed at constant intake charge temperature (180 °C), fixed exhaust gas recirculation (EGR) (15%) at different engine loads. Stable combustion characteristics were determined for diesosene at lower engine loads, however, diesoline and diesohol yielded improved emissions compared to baseline diesel HCCI combustion. At higher loads, diesoline and diesosene showed higher knocking tendency compared to baseline diesel and diesohol. Diesohol showed lower NOx and smoke opacity, however, diesoline and diesosene showed slightly lower hydrocarbon (HC) and carbon monoxide (CO) emissions compared to baseline diesel HCCI combustion. Performance results of diesohol and diesosene were slightly inferior compared to diesel and diesoline HCCI combustion. Physical characterization of exhaust particulates was done for these test fuels using engine exhaust particle sizer (EEPS). Particle number-size distribution showed that most particles emitted from diesoline and diesohol were in ultrafine size range and baseline diesel and diesosene emitted relatively larger particles. Reduction in total particle number concentration with addition of volatile fuel components in mineral diesel was another important observation of this study.

References

References
1.
Singh
,
G.
,
Singh
,
A. P.
, and
Agarwal
,
A. K.
,
2014
, “
Experimental Investigations of Combustion, Performance, and Emission Characterization of Biodiesel Fuelled HCCI Engine Using External Mixture Formation Technique
,”
Sustainable Energy Technol. Assess.
,
6
, pp.
116
128
.
2.
Yamada
,
H.
,
Suzaki
,
K.
,
Sakanashi
,
H.
,
Choi
,
N.
,
Choi
,
N.
, and
Tezaki
,
A.
,
2005
, “
Kinetic Measurements in Homogeneous Charge Compression of Dimethylether: Role of Intermediate Formaldehyde Controlling Chain Branching in the Low-Temperature Oxidation Mechanism
,”
Combust. Flame
,
140
(1–2), pp.
24
33
.
3.
Flowers
,
D.
,
Aceves
,
S.
,
Westbrook
,
C. K.
,
Smith
,
J. R.
, and
Dibble
,
R.
,
2000
, “
Detailed Chemical Kinetic Simulation of Natural Gas HCCI Combustion: Gas Composition Effects and Investigation of Control Strategies
,”
ASME J. Eng. Gas Turbines Power
,
123
(
2
), pp.
433
439
.
4.
Aoyama
,
T.
,
Hattori
,
Y.
,
Mizuta
,
J.
, and
Sato
,
Y.
,
1996
, “
An Experimental Study on Premixed Charge Compression Ignition Gasoline Engine
,”
SAE
Technical Paper No. 960081.
5.
Mancaruso
,
E.
, and
Vaglieco
,
B. M.
,
2010
, “
Optical Investigation of the Combustion Behavior Inside the Engine Operating in HCCI Mode and Using Alternative Diesel Fuel
,”
Exp. Therm. Fluid Sci.
,
34
(
3
), pp.
346
351
.
6.
Singh
,
A. P.
, and
Agarwal
,
A. K.
,
2012
, “
Combustion Characteristics of Diesel HCCI Engine: An Experimental Investigation Using External Mixture Formation Technique
,”
Appl. Energy
,
99
, pp.
116
125
.
7.
Onishi
,
S.
,
Jo
,
S. H.
,
Shoda
,
K.
,
Jo
,
P. D.
, and
Kato
,
S.
,
1979
, “
Active Thermo-Atmosphere Combustion (ATAC)—A New Combustion Process for Internal Combustion Engines
,”
SAE
Technical Paper No. 790501.
8.
Najt
,
P. M.
, and
Foster
,
D. E.
,
1983
, “
Compression-Ignited Homogeneous Charge Combustion
,”
SAE
Technical Paper No. 830264.
9.
Yao
,
M.
,
Zheng
,
Z.
, and
Liu
,
H.
,
2009
, “
Progress and Recent Trends in Homogeneous Charge Compression Ignition (HCCI) Engines
,”
Prog. Energy Combust. Sci.
,
35
(
5
), pp.
398
437
.
10.
Ryan
,
T.
, and
Callahan
,
T.
,
1996
, “
Homogeneous Charge Compression Ignition of Diesel Fuel
,”
SAE
Technical Paper No. 961160.
11.
Dec
,
J. E.
, and
Kelly-Zion
,
P. L.
,
2000
, “
The Effects of Injection Timing and Diluents Addition on Late-Combustion Soot Burnout in a DI Diesel Engine Based on Simultaneous 2D Imaging of OH and Soot
,”
SAE
Technical Paper No. 2000-01-0238.
12.
Shawn
,
M. M.
,
Yann
,
G.
, and
Giorgio
,
R.
,
2003
, “
Mixed-Mode Diesel HCCI With External Mixture Formation
,” Diesel Engine Emissions Reduction (
DEER 2003
), Newport, RI, Aug. 24–28.
13.
Ganesh
,
D.
, and
Nagarajan
,
G.
,
2009
, “
Homogeneous Charge Compression Ignition (HCCI) Combustion of Diesel Fuel With External Mixture Formation
,”
SAE
Technical Paper No. 2009-01-0924.
14.
Kittelson
,
D. B.
, and
Franklin
,
L.
,
2010
, “
Nanoparticle Emissions From an Ethanol Fuelled HCCI Engine
,” Cambridge Particle Meeting 2010, Minneapolis, MN, May 21.
15.
Agarwal
,
A. K.
,
Lukose
,
J.
,
Singh
,
A. P.
, and
Gupta
,
T.
,
2013
, “
Characterization of Exhaust Particulates From Diesel Fuelled Homogenous Charge Compression Ignition Combustion Engine
,”
J. Aerosol Sci.
,
58
, pp.
71
85
.
16.
Agarwal
,
A. K.
,
Gupta
,
T.
,
Lukose
,
J.
, and
Singh
,
A. P.
,
2015
, “
Particulate Characterization and Size Distribution of Gasoline Homogeneous Charge Compression Ignition Engine
,”
Aerosol Air Qual. Res.
,
15
(
2
), pp.
504
516
.
17.
Chao
,
Y.
,
Jian-xin
,
W.
,
Zhi
,
W.
, and
Shi-jin
,
S.
,
2013
, “
Comparative Study on Gasoline Homogeneous Charge Induced Ignition (HCII) by Diesel and Gasoline/Diesel Blend Fuels (GDBF) Combustion
,”
Fuel
,
106
, pp.
470
477
.
18.
Han
,
D.
,
Andrew
,
M. I.
, and
Stanislav
, V
. B.
,
2011
, “
Premixed Low-Temperature Combustion of Blends of Diesel and Gasoline in a High Speed Compression Ignition Engine
,”
Proc. Combust. Inst.
,
33
(
2
), pp.
3039
3046
.
19.
Tongroon
,
M.
, and
Zhao
,
H.
,
2010
, “
Combustion Characteristics of CAI Combustion With Alcohol Fuels
,”
SAE
Technical Paper No. 2010-01-0843.
20.
Petrovic
,
V. S.
,
Jankovic
,
S. P.
,
Tomic
,
M. V.
,
Jovanovich
,
Z. S.
, and
Knezevic
,
D. M.
,
2011
, “
The Possibilities for Measurement and Characterization of Diesel Engine Fine Particles—A Review
,”
Therm. Sci.
,
15
(
4
), pp.
915
938
.
21.
Saxena
,
S.
,
Schneider
,
S.
,
Aceves
,
S.
, and
Dibble
,
R.
,
2012
, “
Wet Ethanol in HCCI Engines With Exhaust Heat Recovery to Improve the Energy Balance of Ethanol Fuels
,”
Appl. Energy
,
98
, pp.
448
457
.
22.
Saxena
,
S.
,
Vuilleumier
,
D.
,
Kozarac
,
D.
,
Krieck
,
M.
,
Dibble
,
R.
, and
Aceves
,
S.
,
2014
, “
Optimal Operating Conditions for Wet Ethanol in a HCCI Engine Using Exhaust Gas Heat Recovery
,”
Appl. Energy
,
116
, pp.
269
277
.
23.
Macka
,
J. H.
,
Aceves
,
S. M.
, and
Dibble
,
R. W.
,
2009
, “
Demonstrating Direct Use of Wet Ethanol in a Homogeneous Charge Compression Ignition (HCCI) Engine
,”
Energy
,
34
(
6
), pp.
782
787
.
24.
Li
,
D. G.
,
Zhen
,
H.
,
Xingcai
,
L.
,
Wu
,
Z.
, and
Jian
,
Y.
,
2006
, “
Physico-Chemical Properties of Ethanol–Diesel Blend Fuel and Its Effect on Performance and Emissions of Diesel Engines
,”
Renewable Energy
,
30
(
6
), pp.
967
976
.
25.
Mohammadi
,
A.
,
Kee
,
S.
,
Ishiyama
,
T.
,
Kakuta
,
T.
, and
Matsumoto
,
T.
,
2005
, “
Implementation of Ethanol Diesel Blend Fuels in PCCI Combustion
,”
SAE
Technical Paper No. 2005-01-3712.
26.
Ahmed
,
I.
,
2001
, “
Oxygenated Diesel: Emissions and Performance Characteristics of Ethanol–Diesel Blends in CI Engines
,”
SAE
Technical Paper No. 2001-01-2475.
27.
He
,
B. Q.
,
Shuai
,
S. J.
,
Wang
,
J. X.
, and
He
,
H.
,
2013
, “
The Effect of Ethanol Blended Diesel Fuels on Emissions From a Diesel Engine
,”
Atmos. Environ.
,
37
(
35
), pp.
4965
4971
.
28.
Yadav
,
S.
,
Murthy
,
K.
,
Mishra
,
D.
, and
Baral
,
B.
,
2005
, “
Estimation of Petrol and Diesel Adulteration With Kerosene and Assessment of Usefulness of Selected Automobile Fuel Quality Test Parameters
,”
Int. J. Environ. Sci. Technol.
,
1
(
4
), pp.
253
258
.
29.
Pathak
,
S.
,
Aigal
,
A. K.
,
Sharma
,
M. L.
,
Narayanan
,
L.
, and
Saxena
,
M.
,
2005
, “
Reduction of Exhaust Emissions in a Kerosene Operated Genset for Electrical Energy Applications
,”
SAE
Technical Paper No. 2005-26-026.
30.
Bergstrand
,
P.
,
2007
, “
Effects on Combustion by Using Kerosene or MK1 Diesel
,”
SAE
Technical Paper No. 2007-01-0002.
You do not currently have access to this content.