A numerical study of two-phase flow inside the nozzle holes and the issuing spray jets for a multihole direct injection gasoline injector has been presented in this work. The injector geometry is representative of the Spray G nozzle, an eight-hole counterbore injector, from the engine combustion network (ECN). Simulations have been carried out for a fixed needle lift. The effects of turbulence, compressibility, and noncondensable gases have been considered in this work. Standard k–ε turbulence model has been used to model the turbulence. Homogeneous relaxation model (HRM) coupled with volume of fluid (VOF) approach has been utilized to capture the phase-change phenomena inside and outside the injector nozzle. Three different boundary conditions for the outlet domain have been imposed to examine nonflashing and evaporative, nonflashing and nonevaporative, and flashing conditions. Noticeable hole-to-hole variations have been observed in terms of mass flow rates for all the holes under all the operating conditions considered in this study. Inside the nozzle holes mild cavitationlike and in the near-nozzle region flash-boiling phenomena have been predicted when liquid fuel is subjected to superheated ambiance. Under favorable conditions, considerable flashing has been observed in the near-nozzle regions. An enormous volume is occupied by the gasoline vapor, formed by the flash boiling of superheated liquid fuel. Large outlet domain connecting the exits of the holes and the pressure outlet boundary appeared to be necessary leading to substantial computational cost. Volume-averaging instead of mass-averaging is observed to be more effective, especially for finer mesh resolutions.

References

References
1.
Weber
,
D.
, and
Leick
,
P.
,
2014
, “
Structure and Velocity Field of Individual Plumes of Flashing Gasoline Direct Injection Sprays
,”
26th Annual Conference on Liquid Atomization and Spray Systems
(ILASS), Bremen, Germany, Sept. 8–10.
2.
Neroorkar
,
K. D.
,
2011
, “
Modeling of Flash Boiling Flows in Injectors With Gasoline-Ethanol Fuel Blends
,” Ph.D. thesis, University of Massachusetts-Amherst, Amherst, MA.
3.
Vanderwege
,
B. A.
, and
Hochgreb
,
S.
,
1998
, “
The Effect of Fuel Volatility on Sprays From High-Pressure Swirl Injectors
,”
Proc. Combust. Inst.
,
27
(
2
), pp.
1865
1871
.
4.
Zeng
,
W.
,
Xu
,
M.
,
Zhang
,
G.
,
Zhang
,
Y.
, and
Cleary
,
D. J.
,
2012
, “
Atomization and Vaporization for Flash-Boiling Multi-Hole Sprays With Alcohol Fuels
,”
Fuel
,
95
, pp.
287
297
.
5.
Xu
,
M.
,
Zhang
,
Y.
,
Zeng
,
W.
,
Zhang
,
G.
, and
Zhang
,
M.
,
2013
, “
Flash Boiling: Easy and Better Way to Generate Ideal Sprays Than the High Injection Pressure
,”
SAE
Paper No. 2013-01-1614.
6.
Blinkov
,
V. N.
,
Jones
,
O. C.
, and
Nigmatulin
,
B. I.
,
1993
, “
Nucleation and Flashing in Nozzles—2. Comparison With Experiments Using a Five-Equation Model for Vapor Void Development
,”
Int. J. Multiphase Flow
,
19
(
6
), pp.
965
986
.
7.
Chang
,
D. L.
, and
Lee
,
C. F.
,
2002
, “
Preliminary Computational Studies of Flash Boiling for Fuel Injectors in Gasoline Direct Injection Automotive Engines
,” 37th Intersociety Energy Conversion Engineering Conference (
IECEC '02
), Washington, DC, July 29–31, pp. 464–469.
8.
Kawano
,
D.
,
Goto
,
Y.
,
Odaka
,
M.
, and
Senda
,
J.
,
2004
, “
Modeling Atomization and Vaporization Processes of Flash-Boiling Spray
,”
SAE
Paper No. 2004-01-0534.
9.
Zeng
,
Y.
, and
Lee
,
C. F.
,
2001
, “
An Atomization Model for Flash Boiling Sprays
,”
Combust. Sci. Technol.
,
169
(
1
), pp.
45
67
.
10.
Zuo
,
B.
,
Gomes
,
A. M.
, and
Rutland
,
C. J.
,
2000
, “
Modelling Superheated Fuel Sprays and Vaporization
,”
Int. J. Eng. Res.
,
1
(
4
), pp.
321
336
.
11.
Lu
,
N.
,
Reveillon
,
J.
,
Meslem
,
Y.
, and
Demoulin
,
F.
,
2014
, “
Modelling Cavitation and Flash Atomization
,”
ASME
Paper No. FEDSM2014-21988.
12.
Henry
,
R.
, and
Fauske
,
H.
,
1971
, “
The Two-Phase Critical Flow of One Component Mixtures in Nozzles, Orifices and Short Tubes
,”
ASME J. Heat Transfer
,
93
(
2
), pp.
179
187
.
13.
Bilicki
,
Z.
, and
Kestin
,
J.
,
1990
, “
Physical Aspects of the Relaxation Model in Two-Phase Flow
,”
Proc. R. Soc. London, Ser. A
,
428
(
1875
), pp.
379
397
.
14.
Downar-Zapolski
,
P.
,
Bilicki
,
Z.
,
Bolle
,
L.
, and
Franco
,
J.
,
1996
, “
The Non-Equilibrium Relaxation Model for One-Dimensional Flashing Liquid Flow
,”
Int. J. Multiphase Flow
,
22
(
3
), pp.
473
483
.
15.
Schmidt
,
D. P.
,
Gopalakrishnan
,
S.
, and
Jasak
,
H.
,
2010
, “
Multi-Dimensional Simulation of Thermal Non-Equilibrium Channel Flow
,”
Int. J. Multiphase Flow
,
36
(
4
), pp.
284
292
.
16.
Bianchi
,
G. M.
,
Negro
,
S.
,
Forte
,
C.
,
Cazzoli
,
G.
, and
Pelloni
,
P.
,
2009
, “
The Prediction of Flash Atomization in GDI Multi-Hole Injectors
,”
SAE
Paper No. 2009-01-1501.
17.
Brennen
,
C. E.
,
1995
,
Cavitation and Bubble Dynamics
,
Oxford University Press
, Oxford, UK.
18.
Gopalakrishnan
,
S.
, and
Schmidt
,
D.
,
2008
, “
A Computational Study of Flashing Flow in Fuel Injector Nozzles
,”
SAE
Paper No. 2008-01-0141.
19.
Moulai
,
M.
,
Grover
,
R.
,
Parrish
,
S.
, and
Schmidt
,
D.
,
2015
, “
Internal and Near-Nozzle Flow in a Multi-Hole Gasoline Injector Under Flashing and Non-Flashing Conditions
,”
SAE
Paper No. 2015-01-0944.
20.
Engine Combustion Network
,
2014
, “
‘Spray G’ Operating Condition
,”
Sandia National Laboratory
, Livermore, CA.
21.
Richards
,
K. J.
,
Senecal
,
P. K.
, and
Pomraning
,
E.
, “
CONVERGE v2.2 Documentation
,” Convergent Sciences, Madison, WI.
22.
Zhao
,
H.
,
Quan
,
S.
,
Dai
,
M.
,
Pomraning
,
E.
,
Senecal
,
P.
,
Xue
,
Q.
,
Battistoni
,
M.
, and
Som
,
S.
,
2014
, “
Validation of a Three-Dimensional Internal Nozzle Flow Model Including Automatic Mesh Generation and Cavitation Effects
,”
ASME J. Eng. Gas Turbines Power
,
136
(
9
), p.
092603
.
23.
Xue
,
Q.
,
Battistoni
,
M.
,
Som
,
S.
,
Quan
,
S.
,
Senecal
,
P. K.
,
Pomraning
,
E.
, and
Schmidt
,
D.
,
2014
, “
Eulerian CFD Modeling of Coupled Nozzle Flow and Spray With Validation Against X-Ray Radiography Data
,”
SAE Int. J. Fuels Lubr.
,
7
(
2
), pp.
1061
1072
.
24.
Xue
,
Q.
,
Battistoni
,
M.
,
Powell
,
C. F.
,
Quan
,
S.
,
Pomraning
,
E.
,
Senecal
,
P. K.
,
Schmidt
,
D. P.
, and
Som
,
S.
,
2015
, “
An Eulerian CFD Model and X-Ray Radiography for Coupled Nozzle Flow and Spray in Internal Combustion Engines
,”
Int. J. Multi-Phase Flows
,
70
, pp.
77
88
.
25.
Battistoni
,
M.
,
Xue
,
Q.
,
Som
,
S.
, and
Pomraning
,
E.
,
2014
, “
Effect of Off-Axis Needle Motion on Internal Nozzle and Near Exit Flow in a Multi-Hole Diesel Injector
,”
SAE Int. J. Fuels Lubr.
,
7
(
1
), pp.
167
182
.
26.
Battistoni
,
M.
,
Som
,
S.
, and
Longman
,
D. E.
,
2014
, “
Comparison of Mixture and Multifluid Models for In-Nozzle Cavitation Prediction
,”
ASME J. Eng. Gas Turbines Power
,
136
(
6
), p.
061506
.
27.
Battistoni
,
M.
,
Duke
,
D. J.
,
Swantek
,
A. B.
,
Tilocco
,
F. Z.
,
Powell
,
C. F.
, and
Som
,
S.
,
2015
, “
Effects of Noncondensable Gas on Cavitating Nozzles
,”
Atom. Sprays
,
25
(
6
), pp.
453
483
.
28.
Saha
,
K.
,
2014
, “
Modelling of Cavitation in Nozzles for Diesel Injection Applications
,” Ph.D. thesis, University of Waterloo, Waterloo, ON, Canada.
29.
Dymond
,
J. H.
,
Glen
,
N. F.
, and
Isdale
,
J. D.
,
1985
, “
Transport Properties of Nonelectrolyte Liquid Mixtures—VII: Viscosity Coefficients for Isooctane and for Equimolar Mixtures of Isooctane + n-Octane and Isooctane + n-Dodecane From 25 to 100 at Pressures Up to 500 MPa or To the Freezing Pressure
,”
Int. J. Thermophys.
,
6
(
3
), pp.
233
250
.
You do not currently have access to this content.