The use of exhaust gas recirculation (EGR) in internal combustion engines has significant impacts on engine combustion and emissions. EGR can be used to reduce in-cylinder NOx production, reduce fuel consumption, and enable advanced forms of combustion. To maximize the benefits of EGR, the exhaust gases are often cooled with liquid to gas heat exchangers. However, the build up of a fouling deposit layer from exhaust particulates and volatiles results in the decrease of heat exchanger efficiency, increasing the outlet temperature of the exhaust gases and decreasing the advantages of EGR. This paper presents an experimental data from a novel in situ measurement technique in a visualization rig during the development of a 378 μm thick deposit layer. Measurements were performed every 6 hrs for up to 24 hrs. The results show a nonlinear increase in deposit thickness with an increase in layer surface area as deposition continued. Deposit surface temperature and temperature difference across the thickness of the layer was shown to increase with deposit thickness while heat transfer decreased. The provided measurements combine to produce deposit thermal conductivity. A thorough uncertainty analysis of the in situ technique is presented and suggests higher measurement accuracy at thicker deposit layers and with larger temperature differences across the layer. The interface and wall temperature measurements are identified as the strongest contributors to the measurement uncertainty. Due to instrument uncertainty, the influence of deposit thickness and temperature could not be determined. At an average deposit thickness of 378 μm and at a temperature of 100 °C, the deposit thermal conductivity was determined to be 0.044 ± 0.0062 W/m K at a 90% confidence interval based on instrument accuracy.

References

References
1.
Cheng
,
S.-W. S.
,
2000
, “
The Impacts of Engine Operating Conditions and Fuel Compositions on the Formation of Combustion Chamber Deposits
,”
SAE
Technical Paper No. 2000-01-2025.
2.
Ismail
,
B.
,
Ewing
,
D.
,
Cotton
,
J. S.
, and
Chang
,
J.-S.
,
2004
, “
Characterization of the Soot Deposition Profiles in Diesel Engine Exhaust Gas Recirculation (EGR) Cooling Devices Using a Digital Neutron Radiography Imaging Technique
,”
SAE
Technical Paper No. 2004-01-1433.
3.
Teng
,
H.
, and
Regner
,
G.
,
2009
, “
Particulate Fouling in EGR Coolers
,”
SAE Int. J. Commer. Veh.
,
2
(
2
), pp.
154
163
.
4.
Abarham
,
M.
,
Zamankhan
,
P.
,
Hoard
,
J. W.
,
Styles
,
D.
,
Sluder
,
C. S.
,
Storey
,
J. M. E.
,
Lance
,
M. J.
, and
Assanis
,
D.
,
2013
, “
CFD Analysis of Particle Transport in Axisymmetric Tube Flows Under the Influence of Thermophoretic Force
,”
Int. J. Heat Mass Transfer
,
61
, pp.
94
105
.
5.
Abarham
,
M.
,
Hoard
,
J. W.
,
Assanis
,
D.
,
Styles
,
D.
,
Sluder
,
C. S.
, and
Storey
,
J. M. E.
,
2010
, “
An Analytical Study of Thermophoretic Particulate Deposition in Turbulent Pipe Flows
,”
Aerosol Sci. Technol.
,
44
(
9
), pp.
785
795
.
6.
Abarham
,
M.
,
Hoard
,
J.
,
Assanis
,
D.
,
Styles
,
D.
,
Curtis
,
E. W.
,
Ramesh
,
N.
,
Sluder
,
C. S.
, and
Storey
,
J. M. E.
,
2009
, “
Modeling of Thermophoretic Soot Deposition and Hydrocarbon Condensation in EGR Coolers
,”
SAE Int. J. Fuels Lubr.
,
2
(
1
), pp.
921
931
.
7.
Warey
,
A.
,
Balestrino
,
S.
,
Szymkowicz
,
P.
, and
Malayeri
,
M. R.
,
2012
, “
A One-Dimensional Model for Particulate Deposition and Hydrocarbon Condensation in Exhaust Gas Recirculation Coolers
,”
Aerosol Sci. Technol.
,
46
(
2
), pp.
198
213
.
8.
Lance
,
M. J.
,
Sluder
,
S.
,
Lewis
,
S.
, and
Storey
,
J.
,
2010
, “
Characterization of Field-Aged EGR Cooler Deposits
,”
SAE Int. J. Engines
,
3
(
2
), pp.
126
136
.
9.
Lance
,
M. J.
,
Storey
,
J.
,
Sluder
,
C. S.
,
Meyer
,
H.
, III
,
Watkins
,
B.
,
Kaiser
,
M.
, and
Ayyappan
,
P.
,
2013
, “
Microstructural Analysis of Deposits on Heavy-Duty EGR Coolers
,”
SAE
Technical Paper No. 2013-01-1288.
10.
Mehravaran
,
M.
, and
Brereton
,
G.
,
2011
, “
Modeling of Thermophoretic Soot Deposition and Stabilization on Cooled Surfaces
,”
SAE
Technical Paper No. 2011-01-2183.
11.
Prabhakar
,
B.
, and
Boehman
,
A. L.
,
2013
, “
Effect of Engine Operating Conditions and Coolant Temperature on the Physical and Chemical Properties of Deposits From an Automotive Exhaust Gas Recirculation Cooler
,”
ASME J. Eng. Gas Turbines Power
,
135
(
2
), p.
022801
.
12.
Abd-Elhady
,
M. S.
,
Zornek
,
T.
,
Malayeri
,
M. R.
,
Balestrino
,
S.
,
Szymkowicz
,
P. G.
, and
Müller-Steinhagen
,
H.
,
2011
, “
Influence of Gas Velocity on Particulate Fouling of Exhaust Gas Recirculation Coolers
,”
Int. J. Heat Mass Transfer
,
54
(
4
), pp.
838
846
.
13.
Lepperhoff
,
G.
, and
Houben
,
M.
,
1993
, “
Mechanisms of Deposit Formation in Internal Combustion Engines and Heat Exchangers
,”
SAE
Technical Paper No. 931032.
14.
Hoard
,
J.
,
Abarham
,
M.
,
Styles
,
D.
,
Giuliano
,
J. M.
,
Sluder
,
C. S.
, and
Storey
,
J. M. E.
,
2008
, “
Diesel EGR Cooler Fouling
,”
SAE
Technical Paper No. 2008-01-2475.
15.
Zhan
,
R.
,
Eakle
,
S. T.
,
Miller
,
J. W.
, and
Anthony
,
J. W.
,
2008
, “
EGR System Fouling Control
,”
SAE Int. J. Engines
,
1
(
1
), pp.
59
64
.
16.
Heywood
,
J.
,
1988
,
Internal Combustion Engine Fundamentals
,
1st ed.
,
McGraw-Hill
,
New York
.
17.
Güralp
,
O.
,
Hoffman
,
M.
,
Assanis
,
D.
, and
Filipi
,
Z.
,
2009
, “
Thermal Characterization of Combustion Chamber Deposits on the HCCI Engine Piston and Cylinder Head Using Instantaneous Temperature Measurements
,”
SAE
Technical Paper No. 2009-01-0668.
18.
Lance
,
M. J.
,
Sluder
,
C. S.
,
Wang
,
H.
, and
Storey
,
J. M. E.
,
2009
, “
Direct Measurement of EGR Cooler Deposit Thermal Properties for Improved Understanding of Cooler Fouling
,”
SAE
Technical Paper No. 2009-01-1461.
19.
Storey
,
J. M. E.
,
Sluder
,
C. S.
,
Lance
,
M. J.
,
Styles
,
D.
, and
Simko
,
S.
,
2011
, “
Exhaust Gas Recirculation Cooler Fouling in Diesel Applications: Fundamental Studies, Deposit Properties and Microstructure
,”
Heat Transfer Eng.
,
34
(
8–9
), pp.
655
664
.
20.
Salvi
,
A.
,
Hoard
,
J.
,
Bieniek
,
M.
,
Abarham
,
M.
,
Styles
,
D.
, and
Assanis
,
D.
,
2014
, “
Effect of Volatiles on Soot Based Deposit Layers
,”
ASME J. Eng. Gas Turbines Power
,
136
(
11
), p.
111401
.
21.
Prabhakar
,
B.
, and
Boehman
,
A. L.
,
2013
, “
Effect of Engine Operating Conditions and Coolant Temperature on the Physical and Chemical Properties of Deposits From an Automotive Exhaust Gas Recirculation Cooler
,”
ASME J. Eng. Gas Turbines Power
,
135
(
2
), p.
022801
.
22.
Hoard
,
J.
,
Giuliano
,
J.
,
Styles
,
D.
,
Sluder
,
S.
,
Storey
,
J.
,
Lewis
,
S.
,
Strzelec
,
A.
, and
Lance
,
M.
,
2007
, “
EGR Catalyst for Cooler Fouling Reduction
,”
DOE Diesel Engine-Efficiency and Emissions Reduction
, Detroit, MI, pp.
1
22
.
23.
Sluder
,
C. S.
,
Storey
,
J. M. E.
,
Lewis
,
S. A.
,
Styles
,
D.
,
Giuliano
,
J.
, and
Hoard
,
J. W.
,
2008
, “
Hydrocarbons and Particulate Matter in EGR Cooler Deposits: Effects of Gas Flow Rate, Coolant Temperature, and Oxidation Catalyst
,”
SAE Int. J. Engines
,
1
(
1
), pp.
1196
1204
.
24.
Sluder
,
C. S.
,
Storey
,
J. M. E.
, and
Youngquist
,
A.
,
2009
, “
ULSD and B20 Hydrocarbon Impacts on EGR Cooler Performance and Degradation
,”
SAE
Technical Paper No. 2009-01-2802.
25.
Salvi
,
A. A.
,
Hoard
,
J.
,
Jagarlapudi
,
P.
,
Pornphaithoonsakun
,
T.
,
Collao
,
K.
,
Assanis
,
D. N.
,
Styles
,
D. J.
,
Abarham
,
M.
, and
Curtis
,
E. W.
,
2013
, “
Optical and Infrared In-Situ Measurements of EGR Cooler Fouling
,”
SAE
Technical Paper No. 2013-01-1289.
26.
Sluder
,
C. S.
, and
Storey
,
J. M. E.
,
2008
, “
EGR Cooler Performance and Degradation: Effects of Biodiesel Blends
,”
SAE
Technical Paper No. 2008-01-2473.
27.
Styles
,
D.
,
Curtis
,
E.
,
Ramesh
,
N.
,
Hoard
,
J.
,
Assanis
,
D.
,
Abarham
,
M.
,
Sluder
,
S.
,
Storey
,
J.
, and
Lance
,
M.
,
2010
, “
Factors Impacting EGR Cooler Fouling—Main Effects and Interactions
,”
16th Directions in Engine-Efficiency and Emission Research Conference
, Detroit, MI, pp.
1
25
.
28.
Abarham
,
M.
,
Chafekar
,
T.
,
Salvi
,
A.
,
Hoard
,
J. W.
,
Styles
,
D.
,
Scott Sluder
,
C.
, and
Assanis
,
D.
,
2013
, “
In-Situ Visualization of Exhaust Soot Particle Deposition and Removal in Channel Flows
,”
Chem. Eng. Sci.
,
87
, pp.
359
370
.
29.
Abarham
,
M.
,
Chafekar
,
T.
,
Hoard
,
J.
,
Styles
,
D.
, and
Assanis
,
D.
,
2012
, “
A Visualization Test Setup for Investigation of Water-Deposit Interaction in a Surrogate Rectangular Cooler Exposed to Diesel Exhaust Flow
,”
SAE
Technical Paper No. 2012-01-0364.
30.
Abarham
,
M.
,
Hoard
,
J.
,
Assanis
,
D.
,
Styles
,
D.
,
Curtis
,
E.
, and
Ramesh
,
N.
,
2010
, “
Review of Soot Deposition and Removal Mechanisms in EGR Coolers
,”
SAE Int. J. Fuels Lubr.
,
3
(
1
), pp.
690
704
.
31.
Sluder
,
C. S.
,
Storey
,
J.
,
Lance
,
M. J.
, and
Barone
,
T.
,
2013
, “
Removal of EGR Cooler Deposit Material by Flow-Induced Shear
,”
SAE Int. J. Engines
,
6
(
2
), pp.
999
1008
.
32.
Hoard
,
J.
,
Chafekar
,
T.
,
Abarham
,
M.
,
Schwader
,
R.
,
Uplegger
,
S.
, and
Styles
,
D.
,
2012
, “
Large Particles in Modern Diesel Engine Exhaust
,”
ASME
Paper No. ICES2012-81232.
You do not currently have access to this content.