The present study was conducted to investigate the physicochemical properties and pyrolysis kinetics of sugarcane bagasse (SB). The physiochemical properties of SB were determined to examine its potential for pyrolysis. The physiochemical properties such as proximate analysis, ultimate analysis, heating values, lignocellulosic composition, X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR) of SB were investigated. The pyrolysis experiments were conducted in a nonisothermal thermogravimetric analyzer (TGA) to understand the thermal degradation behavior of SB. The activation energy (Ea) of SB pyrolysis was calculated by model-free Kissinger–Akahira–Sunose (KAS) and Ozawa–Flynn–Wall (OFW) methods. Average values of activation energy determined through KAS and OFW methods are found as 91.64 kJ/mol and 104.43 kJ/mol, respectively. Variation in the activation energy with degree of conversion was observed, which shows that pyrolysis is a complex process composed of several reactions. Coats–Redfern method was used to calculate the pre-exponential factor and reaction order. Conversion of SB due to heat treatment computed by using the kinetic parameters is found to be in good agreement with the experimental conversion data, and the maximum error limit between the experimental and predicted conversions is 8.5% for 5 °C/min, 6.0% for 10 °C/min, and 11.6% for 20 °C/min. The current investigation proves the suitability of SB as a potential feedstock for pyrolysis.

References

References
1.
Doshi
,
P.
,
Srivastava
,
G.
,
Pathak
,
G.
, and
Dikshit
,
M.
,
2014
, “
Physicochemical and Thermal Characterization of Non–Edible Oilseed Residual Waste as Sustainable Solid Biofuel
,”
Waste Manage.
,
34
(
10
), pp.
1836
1846
.
2.
Demirbas
,
A.
,
2009
, “
Global Renewable Energy Projections
,”
Energy Sources, Part B
,
4
(2), pp.
212
224
.
3.
Ko
,
W. B.
, and
Bin
,
L. H.
,
2004
, “
Gikoko's Experiences With Industrial Waste Wood Dust Utilization and the Development and Commercialization of Biomass Gasification and Power Generation
,”
The International Workshop on Biomass and Clean Fossil Fuel Power Plant Technology
, Jakarta, Indonesia, Jan. 12–13, pp.
10
28
.
4.
Ravindranath
,
N. H.
, and
Hall
,
D. O.
,
1995
,
Biomass, Energy and Environment: Developing Country Perspective From India
,
Oxford University Press
,
Oxford, UK
.
5.
Kazanc
,
F.
,
Khatami
,
R.
,
Manoel Crnkovic
,
P.
, and
Levendis
,
Y. A.
,
2011
, “
Emissions of NOx and SO2 From Coals of Various Ranks, Bagasse, and Coal-Bagasse Blends Burning in O2/N2 and O2/CO2 Environments
,”
Energy Fuels
,
25
(
7
), pp.
2850
2861
.
6.
Ministry of Agriculture
,
2013
, “
Status Paper on Sugarcane
,” Directorate of Sugarcane Development, Lucknow India, http://farmer.gov.in/imagedefault/pestanddiseasescrops/sugarcane.pdf
7.
Partha
,
N.
,
2006
, “
Recovery of Chemicals From Pressmud—A Sugar Industry Waste
,”
Indian Chem. Eng., Sect. A
,
48
(
3
), pp.
160
163
.
8.
Mothé
,
C. G.
, and
Miranda
,
I. C.
,
2009
, “
Characterization of Sugarcane and Coconut Fibers by Thermal Analysis and FTIR
,”
J. Therm. Anal. Calorim.
,
97
(
2
), pp.
661
665
.
9.
Almazan
,
O.
,
Gonzalez
,
L.
,
Galvez
,
L.
,
Lalouette
,
J. A.
,
Bachraz
,
D. Y.
, and
Sukerdeep
,
N.
,
1999
, “
The Sugar Cane, Its By-Products and Co-Products
,” Third Annual Meeting of Agricultural Scientists, Réduit, Mauritius, Nov. 17–18, 1998, pp. 13–25.
10.
Katyal
,
S.
,
Thambimuthu
,
K.
, and
Valix
,
M.
,
2003
, “
Carbonisation of Bagasse in a Fixed Bed Reactor: Influence of Process Variables on Char Yield and Characteristics
,”
Renewable Energy
,
28
(
5
), pp.
713
725
.
11.
Paturau
,
J. M.
,
1987
, “
Alternative Uses of Sugarcane and its Byproducts in Agro Industries
,” Food and Agriculture Organization of the United Nations, Rome, http://www.fao.org/docrep/003/s8850e/s8850e03.htm
12.
Yadav
,
R. L.
, and
Solomon
,
S.
,
2006
, “
Potential of Developing Sugarcane By-Product Based Industries in India
,”
Sugar Tech.
,
8
(
2
), pp.
104
111
.
13.
Santos
,
N. A.
,
Magriotis
,
Z. M.
,
Saczk
,
A. A.
,
Fássio
,
G. T.
, and
Vieira
,
S. S.
,
2015
, “
Kinetic Study of Pyrolysis of Castor Beans (Ricinus communis L.) Presscake: An Alternative Use for Solid Waste Arising From the Biodiesel Production
,”
Energy Fuels
,
29
(
4
), pp.
2351
2357
.
14.
Santos
,
K. G.
,
Lira
,
T. S.
,
Murata
,
V. V.
,
Gianesella
,
M.
, and
Barrozo
,
M. A. S.
,
2010
, “
Pyrolysis of Sugarcane Bagasse: A Consecutive Reactions Kinetic Model From TGA Experiments
,”
Mater. Sci. Forum.
,
660–661
, pp.
593
598
.
15.
Kannan
,
P.
,
Ibrahim
,
S.
,
Suresh Kumar Reddy
,
K.
,
Al Shoaibi
,
A.
, and
Srinivasakannan
,
C.
,
2013
, “
A Comparative Analysis of the Kinetic Experiments in Polyethylene Pyrolysis
,”
ASME J. Energy Res. Technol.
,
136
(
2
), p.
024001
.
16.
Ceylan
,
S.
, and
Topçu
,
Y.
,
2014
, “
Pyrolysis Kinetics of Hazelnut Husk Using Thermogravimetric Analysis
,”
Bioresour. Technol.
,
156
, pp.
182
188
.
17.
Kumar
,
A.
,
Negi
,
Y. S.
,
Choudhary
,
V.
, and
Bhardwaj
,
N. K.
,
2014
, “
Characterization of Cellulose Nanocrystals Produced by Acid-Hydrolysis From Sugarcane Bagasse as Agro-Waste
,”
J. Mater. Phys. Chem.
,
2
(
1
), pp.
1
8
.
18.
Mayor
,
J. R.
, and
Williams
,
A.
,
2010
, “
Residence Time Influence on the Fast Pyrolysis of Loblolly Pine Biomass
,”
ASME J. Energy Res. Technol.
,
132
(
4
), p.
041801
.
19.
Greenhalf
,
C. E.
,
Nowakowski
,
D. J.
, and
Bridgwater
,
A. V.
,
2012
, “
Thermochemical Characterisation of Straws and High Yielding Perennial Grasses
,”
Ind. Crops Prod.
,
36
(
1
), pp.
449
459
.
20.
Alwani
,
M. S.
,
Khalid
,
H. P. S. A.
,
Sulaiman
,
O.
,
Islam
,
M. N.
, and
Dungani
,
R.
,
2014
, “
An Approach to Using Agricultural Waste Fibres in Biocomposites Application: Thermogravimetric Analysis and Activation Energy Study
,”
Bioresources
,
9
(
1
), pp.
218
230
.
21.
Slopiecka
,
K.
,
Bartocci
,
P.
, and
Fantozzi
,
F.
,
2012
, “
Thermogravimetric Analysis and Kinetic Study of Poplar Wood Pyrolysis
,”
Appl. Energy
,
97
, pp.
491
497
.
22.
Cai
,
J. M.
, and
Bi
,
L. S.
,
2009
, “
Kinetic Analysis of Wheat Straw Pyrolysis Using Isoconversional Methods
,”
J. Therm. Anal. Calorim.
,
98
(
1
), pp.
325
330
.
23.
Islam
,
M. A.
,
Asif
,
M.
, and
Hameed
,
B. H.
,
2015
, “
Pyrolysis Kinetics of Raw and Hydrothermally Carbonized Karanj (Pongamia Pinnata) Fruit Hulls Via Thermogravimetric Analysis
,”
Bioresour. Technol.
,
179
, pp.
227
233
.
24.
Sittisun
,
P.
,
Tippayawong
,
N.
, and
Wattanasiriwech
,
D.
,
2014
, “
Pyrolysis Characteristics and Kinetics of Waste Corn Cobs
,”
International Graduate Research Conference
, Chiang Mai, Thailand, Dec. 12, pp.
192
197
.
25.
Ounas
,
A.
,
Aboulkas
,
A.
,
Bacaoui
,
A.
, and
Yaacoubi
,
A.
,
2011
, “
Pyrolysis of Olive Residue and Sugar Cane Bagasse: Non-Isothermal Thermogravimetric Kinetic Analysis
,”
Bioresour. Technol.
,
102
(
24
), pp.
11234
11238
.
26.
Leroy
,
V.
,
Cancellieri
,
D.
,
Leoni
,
E.
, and
Rossi
,
J. L.
,
2010
, “
Kinetic Study of Forest Fuels by TGA: Model-Free Kinetic Approach for the Prediction of Phenomena
,”
Thermochim. Acta
,
497
(
1
), pp.
1
6
.
27.
Biagini
,
E.
,
Fantei
,
A.
, and
Tognotti
,
L.
,
2008
, “
Effect of the Heating Rate on the Devolatilization of Biomass Residues
,”
Thermochim. Acta
,
472
(
1
), pp.
55
63
.
28.
Khonde
,
R. D.
, and
Chaurasia
,
A. S.
,
2015
, “
Pyrolysis of Sawdust, Rice Husk and Sugarcane Bagasse: Kinetic Modeling and Estimation of Kinetic Parameters Using Different Optimization Tools
,”
J. Inst. Eng. (India): Ser. E
,
96
(
1
), pp.
23
30
.
29.
El-Sayed
,
S. A.
, and
Mostafa
,
M. E.
,
2014
, “
Pyrolysis Characteristics and Kinetic Parameters Determination of Biomass Fuel Powders by Differential Thermal Gravimetric Analysis (TGA/DTG)
,”
Energy Convers. Manage.
,
85
, pp.
165
172
.
30.
Aboyade
,
A. O.
,
Görgens
,
J. F.
,
Carrier
,
M.
,
Meyer
,
E. L.
, and
Knoetze
,
J. H.
,
2013
, “
Thermogravimetric Study of the Pyrolysis Characteristics and Kinetics of Coal Blends With Corn and Sugarcane Residues
,”
Fuel Process. Technol.
,
106
, pp.
310
320
.
31.
Aboyade
,
A. O.
,
Carrier
,
M.
,
Meyer
,
E. L.
,
Knoetze
,
J. H.
, and
Görgens
,
J. F.
,
2012
, “
Model Fitting Kinetic Analysis and Characterisation of the Devolatilization of Coal Blends With Corn and Sugarcane Residues
,”
Thermochim. Acta
,
530
, pp.
95
106
.
32.
Aboyade
,
A. O.
,
Hugo
,
T. J.
,
Carrier
,
M.
,
Meyer
,
E. L.
,
Stahl
,
R.
,
Knoetze
,
J. H.
, and
Görgens
,
J. F.
,
2011
, “
Non-Isothermal Kinetic Analysis of the Devolatilization of Corn Cobs and Sugar Cane Bagasse in an Inert Atmosphere
,”
Thermochim. Acta
,
517
(
1
), pp.
81
89
.
33.
Munir
,
S.
,
Daood
,
S. S.
,
Nimmo
,
W.
,
Cunliffe
,
A. M.
, and
Gibbs
,
B. M.
,
2009
, “
Thermal Analysis and Devolatilization Kinetics of Cotton Stalk, Sugar Cane Bagasse and Shea Meal Under Nitrogen and Air Atmospheres
,”
Bioresour. Technol.
,
100
(
3
), pp.
1413
1418
.
34.
Aiman
,
S.
, and
Stubington
,
J. F.
,
1993
, “
The Pyrolysis Kinetics of Bagasse at Low Heating Rates
,”
Biomass Bioenergy
,
5
(
2
), pp.
113
120
.
35.
Mahinpey
,
N.
,
Murugan
,
P.
,
Mani
,
T.
, and
Raina
,
R.
,
2009
, “
Analysis of Bio-Oil, Biogas, and Biochar From Pressurized Pyrolysis of Wheat Straw Using a Tubular Reactor
,”
Energy Fuels
,
25
(
5
), pp.
2736
2742
.
36.
Friedl
,
A.
,
Padouvas
,
E.
,
Rotter
,
H.
, and
Varmuza
,
K.
,
2005
, “
Prediction of Heating Values of Biomass Fuel From Elemental Composition
,”
Anal. Chim. Acta
,
544
(
1–2
), pp.
191
198
.
37.
Basu
,
P.
,
2010
,
Biomass Gasification and Pyrolysis: Practical Design and Theory
,
Academic Press
,
Burlington, MA
.
38.
Li
,
S.
,
Xu
,
S.
,
Liu
,
S.
,
Yang
,
C.
, and
Lu
,
Q.
,
2004
, “
Fast Pyrolysis of Biomass in Free-Fall Reactor for Hydrogen-Rich Gas
,”
Fuel Process. Technol.
,
85
(
8–10
), pp.
1201
1211
.
39.
Chutia
,
R. S.
,
Kataki
,
R.
, and
Bhaskar
,
T.
,
2013
, “
Thermogravimetric and Decomposition Kinetic Studies of Mesua ferrea L. Deoiled Cake
,”
Bioresour. Technol.
,
139
, pp.
66
72
.
40.
Asadullah
,
M.
,
Rahman
,
M. A.
,
Ali
,
M. M.
,
Rahman
,
M. S.
,
Motin
,
M. A.
,
Sultan
,
M. B.
, and
Alam
,
M. R.
,
2007
, “
Production of Bio-Oil From Fixed Bed Pyrolysis of Bagasse
,”
Fuel
,
86
(
16
), pp.
2514
2520
.
41.
Graboski
,
M.
, and
Bain
,
R.
,
1981
,
Biomass Gasification: Principles and Technology
,
T. B.
Reed
, ed.,
Noyes Data Corp.
,
Park Ridge
,
NJ
, pp.
154
182
.
42.
Fernandes
,
E. R. K.
,
Marangoni
,
C.
,
Souza
,
O.
, and
Sellin
,
N.
,
2013
, “
Thermochemical Characterization of Banana Leaves as a Potential Energy Source
,”
Energy Convers. Manage.
,
75
, pp.
603
608
.
43.
McKendry
,
P.
,
2002
, “
Energy Production From Biomass (Part 1): Overview of Biomass
,”
Bioresour. Technol.
,
83
(
1
), pp.
37
46
.
44.
Shen
,
D. K.
,
Gu
,
S.
,
Luo
,
K. H.
,
Bridgwater
,
A. V.
, and
Fang
,
M. X.
,
2009
, “
Kinetic Study on Thermal Decomposition of Woods in Oxidative Environment
,”
Fuel
,
88
(
6
), pp.
1024
1030
.
45.
Sun
,
Z.
,
Shen
,
J.
,
Jin
,
B.
, and
Wei
,
L.
,
2010
, “
Combustion Characteristics of Cotton Stalk in FBC
,”
Biomass Bioenergy
,
34
(
5
), pp.
761
770
.
46.
Safi
,
M. J.
,
Mishra
, I
. M.
, and
Prasad
,
B.
,
2004
, “
Global Degradation Kinetics of Pine Needles in Air
,”
Thermochim. Acta
,
412
(
1
), pp.
155
162
.
47.
Sellin
,
N.
,
de Oliveira
,
B. G.
,
Marangoni
,
C.
,
Souzaa
,
O.
,
de Oliveira
,
A. P. N.
, and
de Oliveira
,
T. M. N.
,
2013
, “
Use of Banana Culture Waste to Produce Briquettes
,”
Chem. Eng. Trans.
,
32
, pp.
349
354
.
48.
Carrier
,
M.
,
Joubert
,
J. E.
,
Danje
,
S.
,
Hugo
,
T.
,
Görgens
,
J.
, and
Knoetze
,
J. H.
,
2013
, “
Impact of the Lignocellulosic Material on Fast Pyrolysis Yields and Product Quality
,”
Bioresour. Technol.
,
150
, pp.
129
138
.
49.
Khatami
,
R.
,
Stivers
,
C.
,
Joshi
,
K.
,
Levendis
,
Y. A.
, and
Sarofim
,
A. F.
,
2012
, “
Combustion Behavior of Single Particles From Three Different Coal Ranks and From Sugar Cane Bagasse in O2/N2 and O2/CO2 Atmospheres
,”
Combust. Flame
,
159
(
3
), pp.
1253
1271
.
50.
Shadangi
,
K. P.
, and
Mohanty
,
K.
,
2014
, “
Kinetic Study and Thermal Analysis of the Pyrolysis of Non-Edible Oilseed Powders by Thermogravimetric and Differential Scanning Calorimetric Analysis
,”
Renewable Energy
,
63
, pp.
337
344
.
51.
Yu
,
C. T.
,
Chen
,
W. H.
,
Men
,
L. C.
, and
Hwang
,
W. S.
,
2009
, “
Microscopic Structure Features Changes of Rice Straw Treated by Boiled Acid Solution
,”
Ind. Crop. Prod.
,
29
(2–3), pp.
308
315
.
52.
Cruz
,
G.
,
Braz
,
C. E. M.
,
Ferreira
,
S. L.
,
dos Santos
,
A. M.
, and
Crnkovic
,
P. M.
,
2013
, “
Physicochemical Properties of Brazilian Biomasses: Potential Applications as Renewable Energy Source
,”
22nd International Congress of Mechanical Engineering
(COBEM 2013), Ribeirão Preto, Brazil, Nov. 3–7.
53.
Sait
,
H. H.
,
Hussain
,
A.
,
Salema
,
A. A.
, and
Ani
,
F. N.
,
2012
, “
Pyrolysis and Combustion Kinetics of Date Palm Biomass Using Thermogravimetric Analysis
,”
Bioresour. Technol.
,
118
, pp.
382
389
.
54.
Nyakuma
,
B. B.
,
Johari
,
A.
,
Ahmad
,
A.
, and
Abdullah
,
T. A. T.
,
2014
, “
Thermogravimetric Analysis of the Fuel Properties of Empty Fruit Bunch Briquettes
,”
J. Teknol.
67
(
3
), pp.
79
82
.
55.
Lopez-Velazquez
,
M. A.
,
Santes
,
V.
,
Balmaseda
,
J.
, and
Torres-Garcia
,
E.
,
2013
, “
Pyrolysis of Orange Waste: A Thermo-Kinetic Study
,”
J. Anal. Appl. Pyrolysis
,
99
, pp.
170
177
.
56.
Corrales
,
R. C. N. R.
,
Mendes
,
F. M. T.
,
Perrone
,
C. C.
,
Sant'anna
,
C.
,
de Souza
,
W.
,
Abud
,
Y.
,
Bon
,
E. P.
,
Ferreira-Leitão
,
V.
,
2012
, “
Structural Evaluation of Sugar Cane Bagasse Steam Pretreated in the Presence of CO2 and SO2
,”
Biotechnol. Biofuels
,
5
, p.
36
.
57.
Dávila-Jiménez
,
M. M.
,
Elizalde-González
,
M. P.
, and
Peláez-Cid
,
A. A.
,
2005
, “
Adsorption Interaction Between Natural Adsorbents and Textile Dyes in Aqueous Solution
,”
Colloids Surf. A
,
254
(
1–3
), pp.
107
114
.
58.
Apaydin-Varol
,
E.
,
Pütün
,
E.
, and
Pütün
,
A. E.
,
2007
, “
Slow Pyrolysis of Pistachio Shell
,”
Fuel
,
86
(
12
), pp.
1892
1899
.
59.
Pindoria
,
R. V.
,
Chatzakis
, I
. N.
,
Lim
,
J. Y.
,
Herod
,
A. A.
,
Dugwell
,
D. R.
, and
Kandiyoti
,
R.
,
1999
, “
Hydropyrolysis of Sugar Cane Bagasse: Effect of Sample Configuration on Bio-Oil Yields and Structures From Two Bench-Scale Reactors
,”
Fuel
,
78
(
1
), pp.
55
63
.
60.
Bilba
,
K.
, and
Ouensanga
,
A.
,
1996
, “
Fourier Transform Infrared Spectroscopic Study of Thermal Degradation of Sugar Cane Bagasse
,”
J. Anal. Appl. Pyrolysis
,
38
(
1
), pp.
61
73
.
61.
Zhao
,
Y.
,
Ding
,
M.
,
Dou
,
Y.
,
Fan
,
X.
,
Wang
,
Y.
, and
Wei
,
X.
,
2014
, “
Comparative Study on the Pyrolysis Behaviors of Corn Stalk and Pine Sawdust Using TG-MS
,”
Trans. Tianjin University
,
20
(
2
), pp.
91
96
.
62.
Aburto
,
J.
,
Moran
,
M.
,
Galano
,
A.
, and
Torres-García
,
E.
,
2015
, “
Non-Isothermal Pyrolysis of Pectin: A Thermochemical and Kinetic Approach
,”
J. Anal. Appl. Pyrolysis
,
112
, pp.
94
104
.
63.
Asadieraghi
,
M.
, and
Daud
,
W. M. A. W.
,
2014
, “
Characterization of Lignocellulosic Biomass Thermal Degradation and Physiochemical Structure: Effects of Demineralization by Diverse Acid Solutions
,”
Energy Convers. Manage.
,
82
, pp.
71
82
.
64.
Yang
,
H.
,
Yan
,
R.
,
Chen
,
H.
,
Lee
,
D. H.
,
Liang
,
D. T.
, and
Zheng
,
C.
,
2006
, “
Mechanism of Palm Oil Waste Pyrolysis in a Packed Bed
,”
Energy Fuels
,
20
(
3
), pp.
1321
1328
.
65.
Jeguirim
,
M.
, and
Trouvé
,
G.
,
2009
, “
Pyrolysis Characteristics and Kinetics of Arundo Donax Using Thermogravimetric Analysis
,”
Bioresour. Technol.
,
100
(
17
), pp.
4026
4031
.
66.
Guerrero
,
M. R. B.
,
Marques da Silva Paula
,
M.
,
Zaragoza
,
M. M.
,
Salinas Gutiérrez
,
J.
,
Guzmán Velderrain
,
V.
,
Lopez
,
A.
, and
Collins-Martínez
,
V.
,
2014
, “
Thermogravimetric Study on the Pyrolysis Kinetics of Apple Pomace as Waste Biomass
,”
Int. J. Hydrogen Energy
,
39
(
29
), pp.
16619
16627
.
67.
Gai
,
C.
,
Dong
,
Y.
, and
Zhang
,
T.
,
2013
, “
The Kinetic Analysis of the Pyrolysis of Agricultural Residue Under Non-Isothermal Conditions
,”
Bioresour. Technol.
,
127
, pp.
298
305
.
68.
Sharma
,
A.
, and
Rao
,
T. R.
,
1999
, “
Kinetics of Pyrolysis of Rice Husk
,”
Bioresour. Technol.
,
67
(
1
), pp.
53
59
.
69.
Damartzis
,
T.
,
Vamvuka
,
D.
,
Sfakiotakis
,
S.
, and
Zabaniotou
,
A.
,
2011
, “
Thermal Degradation Studies and Kinetic Modeling of Cardoon (Cynara Cardunculus) Pyrolysis Using Thermogravimetric Analysis (TGA)
,”
Bioresour. Technol.
,
102
(
10
), pp.
6230
6238
.
You do not currently have access to this content.