A closed-cycle gasoline compression ignition (GCI) engine simulation near top dead center (TDC) was used to profile the performance of a parallel commercial engine computational fluid dynamics (CFD) code, as it was scaled on up to 4096 cores of an IBM Blue Gene/Q (BG/Q) supercomputer. The test case has 9 × 106 cells near TDC, with a fixed mesh size of 0.15 mm, and was run on configurations ranging from 128 to 4096 cores. Profiling was done for a small duration of 0.11 crank angle degrees near TDC during ignition. Optimization of input/output (I/O) performance resulted in a significant speedup in reading restart files, and in an over 100-times speedup in writing restart files and files for postprocessing. Improvements to communication resulted in a 1400-times speedup in the mesh load balancing operation during initialization, on 4096 cores. An improved, “stiffness-based” algorithm for load balancing chemical kinetics calculations was developed, which results in an over three-times faster runtime near ignition on 4096 cores relative to the original load balancing scheme. With this improvement to load balancing, the code achieves over 78% scaling efficiency on 2048 cores, and over 65% scaling efficiency on 4096 cores, relative to 256 cores.

References

References
1.
Borgnakke
,
C.
,
Arpaci
,
V.
, and
Tabaczynski
,
R.
,
1980
, “
A Model for the Instantaneous Heat Transfer and Turbulence in a Spark Ignition Engine
,”
SAE
Technical Paper No. 800287.
2.
Hountalas
,
D.
,
Kouremenos
,
D.
,
Pariotis
,
E.
,
Schwarz
,
V.
, and
Binder
,
K. B.
,
2002
, “
Using a Phenomenological Multi-Zone Model to Investigate the Effect of Injection Rate Shaping on Performance and Pollutants of a DI Heavy Duty Diesel Engine
,”
SAE
Technical Paper No. 2002-01-0074.
3.
Kodavasal
,
J.
,
McNenly
,
M. J.
,
Babajimopoulos
,
A.
,
Aceves
,
S. M.
,
Assanis
,
D. N.
,
Havstad
,
M. A.
, and
Flowers
,
D. L.
,
2013
, “
An Accelerated Multi-Zone Model for Engine Cycle Simulation of Homogeneous Charge Compression Ignition Combustion
,”
Int. J. Engine Res.
,
14
(
5
), pp.
416
433
.
4.
Som
,
S.
,
Longman
,
D.
,
Aithal
,
S.
,
Bair
,
R.
,
Garc′ıa
,
M.
,
Quan
,
S.
,
Richards
,
K. J.
,
Senecal
,
P. K.
,
Shethaji
,
T.
, and
Weber
,
M.
,
2013
, “
A Numerical Investigation on Scalability and Grid Convergence of Internal Combustion Engine Simulations
,”
SAE
Technical Paper No. 2013-01-1095.
5.
Pei
,
Y.
,
Kundu
,
P.
,
Goldin
,
G. M.
, and
Som
,
S.
,
2015
, “
Large Eddy Simulation of a Reacting Spray Flame Under Diesel Engine Conditions
,”
SAE
Technical Paper No. 2015-01-1844.
6.
McNenly
,
M. J.
,
Whitesides
,
R. A.
, and
Flowers
,
D. L.
,
2015
, “
Faster Solvers for Large Kinetic Mechanisms Using Adaptive Preconditioners
,”
Proc. Combust. Inst.
,
35
(
1
), pp.
581
587
.
7.
Flowers
,
D. L.
,
Aceves
,
S. M.
, and
Babajimopoulos
,
A.
,
2006
, “
Effect of Charge Non-Uniformity on Heat Release and Emissions in PCCI Engine Combustion
,”
SAE
Technical Paper No. 2006-01-1363.
8.
Middleton
,
R. J.
,
2014
, “
Simulation of Spark Assisted Compression Ignition Combustion Under EGR Dilute Engine Operating Conditions
,” Ph.D. thesis, The University of Michigan, Ann Arbor, MI.
9.
Shi
,
Y.
,
Kokjohn
,
S. L.
,
Ge
,
H.
, and
Reitz
,
R. D.
,
2009
, “
Efficient Multidimensional Simulation of HCCI and DI Engine Combustion With Detailed Chemistry
,”
SAE
Technical Paper No. 2009-01-0701.
10.
Amsden
,
A. A.
,
1997
, “
KIVA-3V: A Block Structured KIVA Program for Engines with Vertical or Canted Valves
,” Los Alamos National Laboratory, Los Alamos, NM, Report No. LA-13313-MS.
11.
Richards
,
K. J.
,
Senecal
,
P. K.
, and
Pomraning
,
E.
,
2014
, “
Converge (v2.2.0)
,”
Theory Manual
,
Convergent Science
,
Madison, WI
.
12.
Pomraning
,
E.
, and
Rutland
,
C. J.
,
2002
, “
Dynamic One-Equation Nonviscosity Large-Eddy Simulation Model
,”
AIAA J.
,
40
(
4
), pp.
689
701
.
13.
Reitz
,
R.
, and
Diwakar
,
R.
,
1987
, “
Structure of High Pressure Fuel Sprays
,”
SAE
Technical Paper No. 870598.
14.
Senecal
,
P.
,
Richards
,
K.
,
Pomraning
,
E.
,
Yang
,
T.
,
Dai
,
M. Z.
,
McDavid
,
R. M.
,
Patterson
,
M. A.
,
Hou
,
S.
, and
Shethaji
,
T.
,
2007
, “
A New Parallel Cut-Cell Cartesian CFD Code for Rapid Grid Generation Applied to In-Cylinder Diesel Engine Simulations
,”
SAE
Technical Paper No. 2007-01-0159.
15.
Liu
,
A.
,
Mather
,
D.
, and
Reitz
,
R.
,
1993
, “
Modeling the Effects of Drop Drag and Breakup on Fuel Sprays
,”
SAE
Technical Paper No. 930072.
16.
Amsden
,
A. A.
,
O'Rourke
,
P. J.
, and
Butler
,
T. D.
,
1989
, “
KIVA-II: A Computer Program for Chemically Reactive Flows With Sprays
,” Los Alamos National Laboratory, Los Alamos, NM, Laboratory Report No. LA-11560-MS.
17.
Ra
,
Y.
, and
Reitz
,
R. D.
,
2009
, “
A Vaporization Model for Discrete Multi-Component Fuel Sprays
,”
Int. J. Multiphase Flow
,
35
(
2
), pp.
101
117
.
18.
Senecal
,
P. K.
,
Pomraning
,
E.
,
Richards
,
K. J.
,
Briggs
,
T. E.
,
Choi
,
C. Y.
,
McDavid
,
R. M.
, and
Patterson
,
M. A.
,
2003
, “
Multi-Dimensional Modeling of Direct-Injection Diesel Spray Liquid Length and Flame Lift-Off Length Using CFD and Parallel Detailed Chemistry
,”
SAE
Technical Paper No. 2003-01-1043.
19.
Kalghatgi
,
G. T.
,
Risberg
,
P.
, and
Ångström
,
H.-E.
,
2006
, “
Advantages of Fuels With High Resistance to Auto-Ignition in Late-Injection, Low-Temperature, Compression Ignition Combustion
,”
SAE
Technical Paper No. 2006-01-3385.
20.
Manente
,
V.
,
Johansson
,
B.
, and
Tunestal
,
P.
,
2009
, “
Partially Premixed Combustion at High Load Using Gasoline and Ethanol, a Comparison With Diesel
,”
SAE
Technical Paper No. 2009-01-0944.
21.
Sellnau
,
M.
,
Sinnamon
,
J.
,
Hoyer
,
K.
, and
Husted
,
H.
,
2011
, “
Gasoline Direct Injection Compression Ignition (GDCI)—Diesel-Like Efficiency With Low CO2 Emissions
,”
SAE
Technical Paper, Paper No. 2011-01-1386.
22.
Adhikary
,
B. D.
,
Ra
,
Y.
,
Reitz
,
R.
, and
Ciatti
,
S.
,
2012
, “
Numerical Optimization of a Light-Duty Compression Ignition Engine Fuelled With Low-Octane Gasoline
,”
SAE
Technical Paper No. 2012-01-1336.
23.
Ciatti
,
S.
,
Johnson
,
M.
,
Adhikary
,
B. D.
,
Reitz
,
R.
, and
Knock
,
A.
,
2013
, “
Efficiency and Emissions Performance of Multizone Stratified Compression Ignition Using Different Octane Fuels
,”
SAE
Technical Paper No. 2013-01-0263.
24.
Kolodziej
,
C.
,
Ciatti
,
S.
,
Vuilleumier
,
D.
,
Adhikary
,
B. D.
, and
Reitz
,
R. D.
,
2014
, “
Extension of the Lower Load Limit of Gasoline Compression Ignition With 87 AKI Gasoline by Injection Timing and Pressure
,”
SAE
Technical Paper No. 2014-01-1302.
25.
Kolodziej
,
C. P.
,
Kodavasal
,
J.
,
Ciatti
,
S.
,
Som
,
S.
,
Shidore
,
N.
, and
Delhom
,
J.
,
2015
, “
Achieving Stable Engine Operation of Gasoline Compression Ignition Using 87 AKI Gasoline Down to Idle
,”
SAE
Technical Paper No. 2015-01-0832.
26.
Kodavasal
,
J.
,
Kolodziej
,
C.
,
Ciatti
,
S.
, and
Som
,
S.
,
2015
, “
Computational Fluid Dynamics Simulation of Gasoline Compression Ignition
,”
ASME J. Energy Resour. Technol.
,
137
(
3
), p.
032212
.
27.
Kodavasal
,
J.
,
Lavoie
,
G. A.
,
Assanis
,
D. N.
, and
Martz
,
J. B.
,
2015
, “
The Effects of Thermal and Compositional Stratification on the Ignition and Duration of Homogeneous Charge Compression Ignition Combustion
,”
Combust. Flame
,
162
(
2
), pp.
451
461
.
28.
Kodavasal
,
J.
,
Lavoie
,
G. A.
,
Assanis
,
D. N.
, and
Martz
,
J. B.
,
2015
, “
The Effect of Diluent Composition on Homogeneous Charge Compression Ignition Auto-Ignition and Combustion Duration
,”
Proc. Combust. Inst.
,
35
(
3
), pp.
3019
3026
.
29.
Kodavasal
,
J.
,
Lavoie
,
G. A.
,
Assanis
,
D. N.
, and
Martz
,
J. B.
,
2016
, “
Reaction-Space Analysis of Homogeneous Charge Compression Ignition Combustion With Varying Levels of Fuel Stratification Under Positive and Negative Valve Overlap Conditions
,”
Int. J. Engine Res.
, (published online).
30.
Adhikary
,
B. D.
,
Reitz
,
R.
, and
Ciatti
,
S.
,
2013
, “
Study of In-Cylinder Combustion and Multi-Cylinder Light Duty Compression Ignition Engine Performance Using Different RON Fuels at Light Load Conditions
,”
SAE
Technical Paper No. 2013-01-0900.
31.
Catania
,
A. E.
,
Ferrari
,
A.
,
Manno
,
M.
, and
Spessa
,
E.
,
2008
, “
Experimental Investigation of Dynamics Effects on Multiple-Injection Common Rail System Performance
,”
ASME J. Eng. Gas Turbines Power
,
130
(
3
), p.
032806
.
32.
Liu
,
Y.-D.
,
Jia
,
M.
,
Xie
,
M.-Z.
, and
Pang
,
B.
,
2012
, “
Enhancement on a Skeletal Kinetic Model for Primary Reference Fuel Oxidation by Using a Semidecoupling Methodology
,”
Energy Fuels
,
26
(
12
), pp.
7069
7083
.
33.
Carns
,
P.
,
Latham
,
R.
,
Ross
,
R.
,
Iskra
,
K.
,
Lang
,
S.
, and
Riley
,
K.
,
2009
, “
24/7 Characterization of Petascale I/O Workloads
,” IEEE International Conference on Cluster Computing and Workshops (
CLUSTER '09
), New Orleans, LA, Aug. 31–Sept. 4.
34.
Carns
,
P.
,
Harms
,
K.
,
Allcock
,
W.
,
Bacon
,
C.
, and
Lang
,
S.
,
2011
, “
Understanding and Improving Computational Science Storage Access Through Continuous Characterization
,”
ACM Trans. Storage
,
7
(
3
), pp.
8:1
8:26
.
35.
Karypis
,
G.
,
2011
, “
metis—A Software Package for Partitioning Unstructured Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices Version 5.0. Software Package
,”
University of Minnesota
,
Minneapolis, MN
.
36.
Babajimopoulos
,
A.
,
Assanis
,
D. N.
,
Flowers
,
D. L.
,
Aceves
,
S. M.
, and
Hessel
,
R. P.
,
2005
, “
A Fully Coupled Computational Fluid Dynamics and Multi-Zone Model With Detailed Chemical Kinetics for the Simulation of Premixed Charge Compression Ignition Engines
,”
Int. J. Engine Res.
,
6
(
5
), pp.
497
512
.
37.
Kodavasal
,
J.
,
Keum
,
S.
, and
Babajimopoulos
,
A.
,
2011
, “
An Extended Multi-Zone Combustion Model for PCI Simulation
,”
Combust. Theory Modell.
,
15
(
6
), pp.
893
910
.
38.
Cohen
,
S. D.
, and
Hindmarsh
,
A. C.
,
1995
, “
CVODE, A Stiff/Nonstiff ODE Solver in C
,” Stanford University, Lawrence Livermore National Laboratory, Livermore, CA, Report No. UCRL-JC-121014, Rev. 1.
You do not currently have access to this content.