Gasoline compression ignition (GCI), also known as partially premixed compression ignition (PPCI) and gasoline direct injection compression ignition (GDICI), engines have been considered an attractive alternative to traditional spark ignition (SI) engines. Lean-burn combustion with the direct injection of fuel eliminates throttle losses for higher thermodynamic efficiencies, and the precise control of the mixture compositions allows better emission performance such as NOx and particulate matter (PM). Recently, low octane gasoline fuel has been identified as a viable option for the GCI engine applications due to its longer ignition delay characteristics compared to diesel and lighter evaporation compared to gasoline fuel (Chang et al., 2012, “Enabling High Efficiency Direct Injection Engine With Naphtha Fuel Through Partially Premixed Charge Compression Ignition Combustion,” SAE Technical Paper No. 2012-01-0677). The feasibility of such a concept has been demonstrated by experimental investigations at Saudi Aramco (Chang et al., 2012, “Enabling High Efficiency Direct Injection Engine With Naphtha Fuel Through Partially Premixed Charge Compression Ignition Combustion,” SAE Technical Paper No. 2012-01-0677; Chang et al., 2013, “Fuel Economy Potential of Partially Premixed Compression Ignition (PPCI) Combustion With Naphtha Fuel,” SAE Technical Paper No. 2013-01-2701). The present study aims to develop predictive capabilities for low octane gasoline fuel compression ignition (CI) engines with accurate characterization of the spray dynamics and combustion processes. Full three-dimensional simulations were conducted using converge as a basic modeling framework, using Reynolds-averaged Navier–Stokes (RANS) turbulent mixing models. An outwardly opening hollow-cone spray injector was characterized and validated against existing and new experimental data. An emphasis was made on the spray penetration characteristics. Various spray breakup and collision models have been tested and compared with the experimental data. An optimum combination has been identified and applied in the combusting GCI simulations. Linear instability sheet atomization (LISA) breakup model and modified Kelvin–Helmholtz and Rayleigh–Taylor (KH-RT) break models proved to work the best for the investigated injector. Comparisons between various existing spray models and a parametric study have been carried out to study the effects of various spray parameters. The fuel effects have been tested by using three different primary reference fuel (PRF) and toluene primary reference fuel (TPRF) surrogates. The effects of fuel temperature and chemical kinetic mechanisms have also been studied. The heating and evaporative characteristics of the low octane gasoline fuel and its PRF and TPRF surrogates were examined.

References

References
1.
U.S. Energy Information Administration
,
2013
, “
International Energy Outlook 2013
,” U.S. Department of Energy, Washington, DC, Report No. DOE/EIA-0484(2013).
2.
ExxonMobil
,
2012
, “
Energy Outlook
,” accessed Apr. 14, 2015, http://www.exxonmobil.co.uk/corporate/files/news_pub_eo2012.pdf
3.
Kalghatgi
,
G.
,
2013
,
Fuel/Engine Interactions
,
SAE International
,
Warrendale, PA
.
4.
Kalghatgi
,
G. T.
,
2014
, “
The Outlook for Fuels for Internal Combustion Engines
,”
Int. J. Engine Res.
,
15
(
4
), pp.
383
398
.
5.
Chang
,
J.
,
Kalghatgi
,
G.
,
Amer
,
A.
, and
Viollet
,
Y.
,
2012
, “
Enabling High Efficiency Direct Injection Engine With Naphtha Fuel Through Partially Premixed Charge Compression Ignition Combustion
,”
SAE
Technical Paper No. 2012-01-0677.
6.
Chang
,
J.
,
Viollet
,
Y.
,
Amer
,
A.
, and
Kalghatgi
,
G.
,
2013
, “
Fuel Economy Potential of Partially Premixed Compression Ignition (PPCI) Combustion With Naphtha Fuel
,”
SAE
Technical Paper No. 2013-01-2701.
7.
Manente
,
V.
,
Johansson
,
B.
, and
Cannella
,
W.
,
2011
, “
Gasoline Partially Premixed Combustion, the Future of Internal Combustion Engines?
,”
Int. J. Engine Res.
,
12
(
3
), pp.
194
208
.
8.
Manente
,
V.
,
Johansson
,
B.
, and
Tunestal
,
P.
,
2009
, “
Partially Premixed Combustion at High Load Using Gasoline and Ethanol—A Comparison With Diesel
,”
SAE
Technical Paper No. 2009-01-0944.
9.
Manente
,
V.
,
Johansson
,
B.
, and
Tunestal
,
P.
,
2010
, “
Characterization of Partially Premixed Combustion With Ethanol: EGR Sweeps, Low and Maximum Loads
,”
ASME J. Eng. Gas Turbines Power
,
132
(
8
), p.
082802
.
10.
Manente
,
V.
,
Zander
,
C.-G.
,
Johansson
,
B.
,
Tunestal
,
P.
, and
Cannella
,
W.
,
2010
, “
An Advanced Internal Combustion Engine Concept for Low Emissions and High Efficiency From Idle to Max Load Using Gasoline Partially Premixed Combustion
,”
SAE
Technical Paper No. 2010-01-2198.
11.
Viollet
,
Y.
,
Chang
,
J.
, and
Kalghatgi
,
G.
,
2014
, “
Compression Ratio and Derived Cetane Number Effects on Gasoline Compression Ignition Engine Running With Naphtha Fuels
,”
SAE
Technical Paper No. 2014-01-1301.
12.
Borgqvist
,
P.
,
Andersson
,
Ö.
,
Tunestal
,
P.
, and
Johansson
,
B.
,
2012
, “
The Low Load Limit of Gasoline Partially Premixed Combustion Using Negative Valve Overlap
,”
ASME J. Eng. Gas Turbines Power
,
135
(
6
), p.
062002
.
13.
Hanson
,
R.
,
Splitter
,
D.
, and
Reitz
,
R. D.
,
2009
, “
Operating a Heavy-Duty Direct-Injection Compression-Ignition Engine With Gasoline for Low Emissions
,”
SAE
Technical Paper No. 2009-01-1442.
14.
Adhikary
,
B. D.
,
Ra
,
Y.
,
Reitz
,
R. D.
, and
Ciatti
,
S.
,
2012
, “
Numerical Optimization of a Light-Duty Compression Ignition Engine Fuelled With Low-Octane Gasoline
,”
SAE
Technical Paper No. 2012-01-1336.
15.
Ra
,
Y.
,
Loeper
,
P.
,
Andrie
,
M.
,
Krieger
,
R.
,
Foster
,
D. E.
,
Reitz, R. D.
, and
Durret
,
R. P.
,
2012
, “
Gasoline DICI Engine Operation in the LTC Regime Using Triple-Pulse Injection
,”
SAE Int. J. Engines
,
5
(
3
), pp.
1109
1132
.
16.
Ciatti
,
S.
,
Johnson
,
M.
,
Adhikary
,
B. D.
,
Reitz
,
R. D.
, and
Knock
,
A.
,
2013
, “
Efficiency and Emissions Performance of Multizone Stratified Compression Ignition Using Different Octane Fuels
,”
SAE
Technical Paper No. 2013-01-0263.
17.
Solsjö
,
R.
,
Jangi
,
M.
,
Tuner
,
M.
, and
Bai
,
X.-S.
,
2012
, “
Large Eddy Simulation of Partially Premixed Combustion in an Internal Combustion Engine
,”
SAE
Technical Paper No. 2012-01-0139.
18.
Kodavasal
,
J.
,
Kolodziej
,
C. P.
,
Ciatti
,
S.
, and
Som
,
S.
,
2015
, “
Computational Fluid Dynamics Simulation of Gasoline Compression Ignition
,”
ASME J. Energy Resour. Technol.
,
137
(
3
), p.
032212
.
19.
Onishi
,
S.
,
Jo
,
S. H.
,
Shoda
,
K.
,
Jo
,
P. D.
, and
Kato
,
S.
,
1979
, “
Active Thermo-Atmosphere Combustion (ATAC)—A New Combustion Process for Internal Combustion Engines
,”
SAE
Technical Paper No. 790501.
20.
Noguchi
,
M.
,
Tanaka
,
Y.
,
Tanaka
,
T.
, and
Takeuchi
,
Y.
,
1979
, “
A Study on Gasoline Engine Combustion by Observation of Intermediate Reactive Products During Combustion
,”
SAE
Technical Paper No. 790840.
21.
Najt
,
P. M.
, and
Foster
,
D. E.
,
1983
, “
Compression-Ignited Homogeneous Charge Combustion
,”
SAE
Technical Paper No. 830264.
22.
Thring
,
R. H.
,
1989
, “
Homogeneous-Charge Compression-Ignition (HCCI) Engines
,”
SAE
Technical Paper No. 892068.
23.
Iwabuchi
,
Y.
,
Kawai
,
K.
,
Shoji
,
T.
, and
Takeda
,
Y.
,
1999
, “
Trial of New Concept Diesel Combustion System—Premixed Compression-Ignited Combustion
,”
SAE
Technical Paper No. 1999-01-0185.
24.
Kimura
,
S.
,
Aoki
,
O.
,
Ogawa
,
H.
,
Muranaka
,
S.
, and
Enomoto
,
Y.
,
1999
, “
New Combustion Concept for Ultra-Clean and High-Efficiency Small DI Diesel Engines
,”
SAE
Technical Paper No. 1999-01-3681.
25.
Ra
,
Y.
,
Yun
,
J. E.
, and
Reitz
,
R. D.
,
2009
, “
Numerical Parametric Study of Diesel Engine Operation With Gasoline
,”
Combust. Sci. Technol.
,
181
(
2
), pp.
350
378
.
26.
Lefebvre
,
A. H.
,
1998
,
Gas Turbine Combustion
, 2nd ed.,
CRC Press
,
Philadelphia, PA
.
27.
Williams
,
F. A.
,
1985
,
Combustion Theory
,
Perseus Books
,
Reading, MA
.
28.
Senecal
,
P. K.
,
Schmidt
,
D. P.
,
Nouar
,
I.
,
Rutland
,
C. J.
,
Reitz
,
R. D.
, and
Corradini
,
M. L.
,
1999
, “
Modeling High-Speed Viscous Liquid Sheet Atomization
,”
Int. J. Multiphase Flow
,
25
(
6–7
), pp.
1073
1097
.
29.
Schwarz
,
C.
,
Schünemann
,
E.
,
Durst
,
B.
,
Fischer
,
J.
, and
Witt
,
A.
,
2006
, “
Potentials of the Spray-Guided BMW DI Combustion System
,”
SAE
Technical Paper No. 2006-01-1265.
30.
Senecal
,
P.
,
Richards
,
K.
, and
Pomraning
,
E.
,
2014
, “
CONVERGE Manual (Version 2.2.0)
,”
Convergent Science, Inc.
,
Madison, WI
.
31.
Senecal
,
P. K.
,
Richards
,
K. J.
,
Pomraning
,
E.
,
Yang
,
T.
,
Dai
,
M. Z.
,
McDavid
,
R. M.
,
Patterson
,
M. A.
,
Hou
,
S.
, and
Shethaji
,
T.
,
2007
, “
A New Parallel Cut-Cell Cartesian CFD Code for Rapid Grid Generation Applied to In-Cylinder Diesel Engine Simulations
,”
SAE
Technical Paper No. 2007-01-0159.
32.
Schmidt
,
D. P.
,
Nouar
,
I.
,
Senecal
,
P. K.
,
Rutland
,
C. J.
,
Martin
,
J. K.
,
Reitz
,
R. D.
, and
Hoffman
,
J. A.
,
1999
, “
Pressure-Swirl Atomization in the Near Field
,”
SAE
Technical Paper No. 1999-01-0496.
33.
Martin
,
D.
,
Cardenas
,
M.
,
Pischke
,
P.
, and
Kneer
,
R.
,
2010
, “
Experimental Investigation of Near Nozzle Spray Structure and Velocity for a GDI Hollow Cone Spray
,”
Atomization Sprays
,
20
(
12
), pp.
1065
1076
.
34.
Han
,
Z.
,
Parrish
,
S.
,
Farrell
,
P. V.
, and
Reitz
,
R. D.
,
1997
, “
Modeling Atomization Processes of Pressure-Swirl Hollow-Cone Fuel Sprays
,”
Atomization Sprays
,
7
(
6
), pp.
663
684
.
35.
O'Rourke
,
P. J.
,
1981
, “
Collective Drop Effects on Vaporizing Liquid Sprays
,” Ph.D. thesis, Princeton University, Princeton, NJ.
36.
Schmidt
,
D. P.
, and
Rutland
,
C. J.
,
2000
, “
A New Droplet Collision Algorithm
,”
J. Comput. Phys.
,
164
(
1
), pp.
62
80
.
37.
Post
,
S. L.
, and
Abraham
,
J.
,
2002
, “
Modeling the Outcome of Drop–Drop Collisions in Diesel Sprays
,”
Int. J. Multiphase Flow
,
28
(
6
), pp.
997
1019
.
38.
Amsden
,
A. A.
,
O'Rourke
,
P. J.
, and
Butler
,
T. D.
,
1989
, “
KIVA-II: A Computer Program for Chemically Reactive Flows With Sprays
,” Los Alamos National Laboratory, Los Alamos, NM, Report No. LA-11560-MS.
39.
Reitz
,
R. D.
, and
Diwakar
,
R.
,
1987
, “
Structure of High-Pressure Fuel Sprays
,”
SAE
Technical Paper No. 870598.
40.
Liu
,
A. B.
,
Mather
,
D.
, and
Reitz
,
R. D.
,
1993
, “
Modeling the Effects of Drop Drag and Breakup on Fuel Sprays
,”
SAE
Technical Paper No. 930072.
41.
Senecal
,
P. K.
,
Pomraning
,
E.
,
Richards
,
K. J.
,
Briggs
,
T. E.
,
Choi
,
C. Y.
,
McDavid
,
R. M.
, and
Patterson
,
M. A.
,
2003
, “
Multi-Dimensional Modeling of Direct-Injection Diesel Spray Liquid Length and Flame Lift-Off Length Using CFD and Parallel Detailed Chemistry
,”
SAE
Technical Paper No. 2003-01-1043.
42.
Liu
,
Y.-D.
,
Jia
,
M.
,
Xie
,
M.-Z.
, and
Pang
,
B.
,
2013
, “
Development of a New Skeletal Chemical Kinetic Model of Toluene Reference Fuel With Application to Gasoline Surrogate Fuels for Computational Fluid Dynamics Engine Simulation
,”
Energy Fuels
,
27
(
8
), pp.
4899
4909
.
43.
Andrae
,
J. C. G.
,
Brinck
,
T.
, and
Kalghatgi
,
G. T.
,
2008
, “
HCCI Experiments With Toluene Reference Fuels Modeled by a Semidetailed Chemical Kinetic Model
,”
Combust. Flame
,
155
(
4
), pp.
696
712
.
44.
Sazhin
,
S.
,
2014
,
Droplets and Sprays
,
Springer
,
London
.
45.
Gusev
,
I. G.
,
Krutitskii
,
P. A.
,
Sazhin
,
S. S.
, and
Elwardany
,
A. E.
,
2012
, “
New Solutions to the Species Diffusion Equation Inside Droplets in the Presence of the Moving Boundary
,”
Int. J. Heat Mass Transfer
,
55
(
7–8
), pp.
2014
2021
.
46.
Sazhin
,
S. S.
,
Elwardany
,
A.
,
Krutitskii
,
P. A.
,
Castanet
,
G.
,
Lemoine
,
F.
,
Sazhina
,
E. M.
, and
Heikal
,
M. R.
,
2010
, “
A Simplified Model for Bi-Component Droplet Heating and Evaporation
,”
Int. J. Heat Mass Transfer
,
53
(
21–22
), pp.
4495
4505
.
47.
Sazhin
,
S. S.
,
Al Qubeissi
,
M.
,
Kolodnytska
,
R.
,
Elwardany
,
A. E.
,
Nasiri
,
R.
, and
Heikal
,
M. R.
,
2014
, “
Modelling of Biodiesel Fuel Droplet Heating and Evaporation
,”
Fuel
,
115
, pp.
559
572
.
48.
Sazhin
,
S. S.
,
Al Qubeissi
,
M.
,
Nasiri
,
R.
,
Gun'ko
,
V. M.
,
Elwardany
,
A. E.
,
Lemoine
,
F.
,
Grisch
,
F.
, and
Heikal
,
M. R.
,
2014
, “
A Multi-Dimensional Quasi-Discrete Model for the Analysis of Diesel Fuel Droplet Heating and Evaporation
,”
Fuel
,
129
, pp.
238
266
.
49.
Sazhin
,
S. S.
,
Elwardany
,
A. E.
,
Sazhina
,
E. M.
, and
Heikal
,
M. R.
,
2011
, “
A Quasi-Discrete Model for Heating and Evaporation of Complex Multicomponent Hydrocarbon Fuel Droplets
,”
Int. J. Heat Mass Transfer
,
54
(
19–20
), pp.
4325
4332
.
50.
Pischke
,
P.
,
Martin
,
D.
, and
Kneer
,
R.
,
2010
, “
Combined Spray Model for Gasoline Direct Injection Hollow-Cone Sprays
,”
Atomization Sprays
,
20
(
4
), pp.
345
364
.
51.
Amsden
,
A. A.
,
1997
, “
KIVA-3V: A Block-Structured KIVA Program for Engines With Vertical or Canted Valves
,”
Los Alamos National Laboratory
, Los Alamos, NM, Report No. LA-13313-MS.
52.
Han
,
Z.
, and
Reitz
,
R. D.
,
1995
, “
Turbulence Modeling of Internal Combustion Engines Using RNG κ–ε Models
,”
Combust. Sci. Technol.
,
106
, pp.
267
295
.
53.
Kalghatgi
,
G. T.
,
Babiker
,
H.
, and
Badra
,
J.
,
2015
, “
A Simple Method to Predict Knock Using Toluene, N-Heptane and Iso-Octane Blends (TPRF) as Gasoline Surrogates
,”
SAE
Technical Paper No. 2015-01-0757.
54.
Elwardany
,
A.
,
Sazhin
,
S. S.
, and
Farooq
,
A.
,
2013
, “
Modeling of Heating and Evaporation of Primary Reference Fuels and Toluene Reference Fuels
,”
9th Asia-Pacific Conference on Combustion
, Gyeongju, Korea, May 19–22.
You do not currently have access to this content.