In critical situations such as floods and earthquakes, the relief forces require a refrigeration for pharmaceuticals and vaccines, which could operate without an electrical energy and the alternative energies, such as solar energy, engine exhaust gases heat, and wind energy. In this paper, a refrigeration cycle has been modeled as an adsorption refrigeration cycle with an activated carbon/methanol as adsorbent/adsorbate pair and two sources of energy—solar energy and engine exhaust gases heat. The solar cycle had a collector with area of 1 m2 and the exhaust gas cycle included a heat exchanger with 100 °C temperature difference between inlet and outlet gases. The temperature profile in adsorbent bed, evaporator, and condenser was obtained from modeling. Moreover, the pressure profile, overall heat transfer coefficient of collector and adsorbent bed, concentration, and the solar radiation were reported. Results represented the coefficient of performance (COP) of 0.55, 0.2, and 0.56 for complete system, solar adsorption refrigeration, and exhaust heat adsorption refrigeration, respectively. In addition, exhaust heat adsorption refrigeration has a value of 2.48 of specific cooling power (SCP). These results bring out a good performance of the proposed model in the climate of Iran.

References

References
1.
Kumru
,
O. S.
,
Joshi
,
S. B.
,
Smith
,
D. E.
,
Russell Middaugh
,
C.
,
Prusik
,
T.
, and
Volkin
,
D. B.
,
2014
, “
Vaccine Instability in the Cold Chain: Mechanisms, Analysis and Formulation Strategies
,”
Biologicals
,
42
(
5
), pp.
237
259
.
2.
Harvey
,
D.
,
2010
,
Energy and the New Reality 1: Energy Efficiency and the Demand for Energy Services
,
Earthscan
,
New York
.
3.
Wang
,
R.
,
Wang
,
L.
, and
Wu
,
J.
,
2014
,
Adsorption Refrigeration Technology: Theory and Application
,
Wiley
, Singapore.
4.
Allaie
,
M. N.
,
Rahimian
,
H.
,
Javaheri
,
M.
, and
Mohammad Maroufi
,
S.
,
2015
, “
Use of Solar Energy in Optimization of Renewable Generation Sources
,”
MAGNT Research Report, Vol. 3
, No.
1
, pp.
334
348
, Report No. ISSN. 1444-8939.
5.
Rogowska
,
A.
, and
Szaflik
,
W.
,
2005
, “
Cooling Load Production in Sorption Cycles Supplied by a Geothermal Heat Source for Air
,”
World Geothermal Congress
, Antalya, Turkey, April 24–29, paper No: 1445
6.
Vasta
,
S.
,
Maggio
,
G.
,
Santori
,
G.
,
Freni
,
A.
,
Polonara
,
F.
, and
Restuccia
,
G.
,
2008
, “
An Adsorptive Solar Ice-Maker Dynamic Simulation for North Mediterranean Climate
,”
Energy Convers. Manage.
,
49
(
11
), pp.
3025
3035
.
7.
Critoph
,
R. E.
,
1988
, “
Performance Limitations of Adsorption Cycles for Solar Cooling
,”
Sol. Energy
,
41
(
1
), pp.
21
31
.
8.
Critoph
,
R. E.
, and
Vogel
,
R.
,
1986
, “
Possible Adsorption Pairs for Use in Solar Cooling
,”
Int. J. Ambient Energy
,
7
(
4
), pp.
183
190
.
9.
Vasiliev
,
L. L.
,
Mishkinis
,
D. A.
,
Antukh
,
A. A.
, and
Vasiliev
,
L. L.
, Jr.
,
2001
, “
Solar-Gas Solid Sorption Heat Pump
,”
Appl. Therm. Eng.
,
21
(
5
), pp.
83
573
.
10.
Wang
,
R. Z.
,
2001
, “
Performance Improvement of Adsorption Cooling by Heat and Mass Recovery Operation
,”
Int. J. Refrig.
,
24
(
7
), pp.
11
602
.
11.
Critoph
,
R. E.
,
2001
, “
Simulation of a Continuous Multiple-Bed Regenerative Adsorption Cycle
,”
Int. J. Refrig.
,
24
(
5
), pp.
428
437
.
12.
Chahbani
,
M. H.
,
Labidi
,
J.
, and
Paris
,
J.
,
2004
, “
Modeling of Adsorption Heat Pumps With Heat Regeneration
,”
Appl. Therm. Eng.
,
24
(
2–3
), pp.
431
447
.
13.
Alam
,
K. C. A.
,
Akahira
,
A.
,
Hamamoto
,
Y.
,
Akisawa
,
A.
, and
Kashiwagi
,
T.
,
2004
, “
A Four-Bed Mass Recovery Adsorption Refrigeration Cycle Driven by Low Temperature Waste/Renewable Heat Source
,”
Renewable Energy
,
29
(
9
), pp.
1461
1475
.
14.
Akahira
,
A.
,
Alam
,
K. C. A.
,
Hamamoto
,
Y.
,
Akisawa
,
A.
, and
Kashiwagi
,
T.
,
2004
, “
Mass Recovery Adsorption Refrigeration Cycle-Improving Cooling Capacity
,”
Int. J. Refrig.
,
27
, pp.
225
234
.
15.
Luo
,
H. L.
,
Dai
,
Y. J.
,
Wang
,
R. Z.
,
Wu
,
J. Y.
,
Xu
,
Y. X.
, and
Shen
,
J. M.
,
2006
, “
Experimental Investigation of a Solar Adsorption Chiller Used for Grain Depot Cooling
,”
Appl. Therm. Eng.
,
26
(
11–12
), pp.
25
1218
.
16.
Wang
,
W.
,
Qu
,
T. F.
, and
Wang
,
R. Z.
,
2002
, “
Influence of Degree of Mass Recovery and Heat Regeneration on Adsorption Refrigeration Cycles
,”
Energy Convers. Manage.
,
43
(
5
), pp.
733
741
.
17.
Sward
,
B. K.
,
LeVan
,
M. D.
, and
Francis
,
M.
,
2000
, “
Adsorption Heat Pump Modeling: The Hermal Wave Process With Local Equilibrium
,”
Appl. Therm. Eng.
,
20
(
8
), pp.
759
780
.
18.
Zhao
,
H.
,
Zhang
,
M.
,
Zhenyan
,
L.
, and
Xiaodong
,
M.
,
2008
, “
Mechanical and Experimental Study on Freeze Proof Solar Powered Adsorption Cooling Tube Using Active Carbon/Methanol Working Pair
,”
Energy Convers. Manage.
,
49
(
8
), pp.
2434
2438
.
19.
Hassan
,
H. Z.
,
Mohamad
,
A. A.
, and
Bennacer
,
R.
,
2011
, “
Simulation of an Adsorption Solar Cooling System
,”
Energy
,
36
(
1
), pp.
530
537
.
20.
Srinivas
,
T.
, and
Reddy
,
B. V.
,
2014
, “
Thermal Optimization of a Solar Thermal Cooling Cogeneration Plant at Low Temperature Heat Recovery
,”
ASME J. Energy Resour. Technol.
,
136
(
2
), p. 021204.
21.
Ogueke
,
N. V.
, and
Anyanwu
,
E. E.
,
2009
, “
The Performance Analysis of a Solid Adsorption Solar Refrigerator During Collector Cool-Down and Refrigerant Evaporation/Re-Adsorption Phases
,”
Proc. Inst. Mech. Eng.
,
223
(
1
), pp.
11
19
.
22.
Li
,
M.
, and
Wang
,
R. Z.
,
2003
, “
Heat and Mass Transfer in a Flat Plate Solar Solid Adsorption Refrigeration Ice Maker
,”
Renewable Energy
,
28
(
4
), pp.
613
622
.
23.
Chekirou
,
W.
,
Boukheit
,
N.
, and
Kerbache
,
T.
,
2007
, “
Numerical Modelling of Combined Heat and Mass Transfer in a Tubular Adsorber of a Solid Adsorption Solar Refrigerator
,”
Rev. Energies Renouvelables
,
10
(
3
), pp.
367
379
.
24.
Qasem
,
N. A.
, and
AI El-Shaarawi
,
M.
,
2013
, “
Improving Ice Productivity and Performance for an Activated Carbon/Methanol Solar Adsorption Ice-Maker
,”
Solar Energy
,
98
, pp.
523
542
.
25.
Jacobs
,
T. J.
,
2015
, “
Waste Heat Recovery Potential of Advanced Internal Combustion Engine Technologies
,”
ASME J. Energy Resour. Technol.
,
137
(
4
), p. 042004.
26.
Manzela
,
A. A.
,
De Morais Hanriot
,
S.
,
Cabezas-Gómez
,
L.
, and
Ricardo Sodré
,
J.
,
2010
, “
Using Engine Exhaust Gas as Energy Source for an Absorption Refrigeration System
,”
Appl. Energy
,
87
(
4
), pp.
1141
1148
.
27.
Jabbar
,
A.
,
2010
, “
Experimental Study of Waste Heat Adsorption Air Conditioning Cycle
,” Master's thesis, Technical College Baghdad, Baghdad, Iraq.
28.
Zhang
,
L. Z.
,
2000
, “
Design and Testing of an Automobile Waste Heat Adsorption Cooling System
,”
Appl. Therm. Eng.
,
20
(
1
), pp.
103
114
.
29.
Khaliq
,
A.
,
Kumar
,
R.
, and
Dincer
,
I.
,
2009
, “
Exergy Analysis of an Industrial Waste Heat Recovery Based Cogeneration Cycle for Combined Production of Power and Refrigeration
,”
ASME J. Energy Resour. Technol.
,
131
(
2
), p. 022402.
30.
Rauofirad
,
M.
,
2006
,
Design of Solar Systems in Iran Buildings
,
Iranian Fuel Conservation Company
, Tehran.
31.
Chekirou
,
W.
,
Chikouche
,
A.
,
Boukheit
,
N.
, and
Phalippou
,
S.
,
2014
, “
Dynamic Modelling and Simulation of the Tubular Adsorber of a Solid Adsorption Machine Powered by Solar Energy
,”
Int. J. Refrig.
,
39
, pp.
137
151
.
32.
Pralon
,
A.
,
Ferreira
,
L.
,
Bezerra Grilo
,
M.
,
Ronelli
,
R.
,
Andrade
,
D.
, and
Antônio Belo
,
F.
,
2007
, “
Experimental Thermodynamic Cycles and Performance Analysis of a Solar-Powered Adsorptive Icemaker in Hot Humid Climate
,”
Renewable Energy
,
32
(
4
), pp.
697
712
.
33.
Jing
,
H.
, and
Exell
,
R. H. B.
,
1994
, “
Simulation and Sensitivity Analysis of an Intermittent Solarpowered Charcoal/Methanol Refrigerator
,”
Renewable Energy
,
4
(
1
), pp.
133
149
.
34.
Ogueke
,
N. V.
, and
Anyanwu
,
E. E.
,
2008
, “
Design Improvements for a Collector/Generator/Adsorber of a Solid Adsorption Solar Refrigerator
,”
Renewable Energy
,
33
(
24
), pp.
33
40
.
35.
Leite
,
A. P. F.
, and
Daguenet
,
M. D.
,
2000
, “
Performance of a New Solid Adsorption Ice Maker With Solar Energy Regeneration
,”
Energy Convers. Manage.
,
41
(
15
), pp.
47
1625
.
36.
Pons
,
M.
,
1996
, “
Second Law Analysis of Adsorption Cycles With Thermal Regeneration
,”
ASME J. Energy Resour. Technol.
,
118
(
3
), pp.
229
236
.
37.
Ellis
,
M. W.
, and
Wepfer
,
W. J.
,
1999
, “
Effects of Adsorbent Conductivity and Permeability on the Performance of a Solid Sorption Heat Pump
,”
ASME J. Energy Resour. Technol.
,
121
(
1
), pp.
51
59
.
You do not currently have access to this content.