This paper presents a comprehensive analysis of the heat transfer during the melting process of a high-temperature (>800 °C) phase-change material (PCM) encapsulated in a vertical cylindrical container. The energy contributions from radiation, natural convection, and conduction have been included in the mathematical model in order to capture most of the physics that describe and characterize the problem and quantify the role that each mechanism plays during the phase-change process. Numerical predictions based on the finite-volume method have been obtained by solving the mass, momentum, and energy conservation principles along with the enthalpy porosity method to track the liquid/solid interface. Experiments were conducted to obtain the temperature response of the thermal energy storage (TES) cell during the sensible heating and phase-change regions of the PCM. Continuous temperature measurements of porcelain crucibles filled with ACS grade NaCl were recorded. The temperature readings were recorded at the center of the sample and at the wall of the crucible as the samples were heated in a furnace over a temperature range of 700–850 °C. The numerical predictions have been validated by the experimental results, and the effect of the controlling parameters of the system on the melt fraction rate has been evaluated. The results showed that the natural convection is the dominant heat transfer mechanism. In all the experimental study cases, the measured temperature response captured the PCM melting trend with acceptable repeatability. The uncertainty analysis of the experimental data yielded an approximate error of ±5.81 °C.

References

References
1.
Stekli
,
J.
,
Irwin
,
L.
, and
Pitchumani
,
R.
,
2013
, “
Technical Challenges and Opportunities for Concentrating Solar Power With Thermal Energy Storage
,”
J. Therm. Sci. Eng. Appl.
,
5
(
2
), p.
021011
.
2.
Nithyanandam
,
K.
, and
Pitchumani
,
R.
,
2014
, “
Cost and Performance Analysis of Concentrating Solar Power Systems With Integrated Latent Thermal Energy Storage
,”
Energy
,
64
, pp.
793
810
.
3.
Krane
,
R.
, and
Krane
,
M.
,
1992
, “
The Optimum Design of Stratified Thermal Energy Storage Systems—Part I: Development of the Basic Analytical Model
,”
ASME J. Energy Resour. Technol.
,
114
(
3
), pp.
197
203
.
4.
Krane
,
R.
, and
Krane
,
M.
,
1992
, “
The Optimum Design of Stratified Thermal Energy Storage Systems—Part II: Completion of the Analytical Model, Presentation and Interpretation of the Results
,”
ASME J. Energy Resour. Technol.
,
114
(
3
), pp.
204
208
.
5.
Kuravi
,
S.
,
Trahan
,
J.
,
Goswami
,
D. Y.
,
Rahman
,
M. M.
, and
Stefanakos
,
E. K.
,
2013
, “
Thermal Energy Storage Technologies and Systems for Concentrating Solar Power Plants
,”
Prog. Energy Combust. Sci.
,
39
(
4
), pp.
285
319
.
6.
Nithyanandam
,
K.
,
Pitchumani
,
R.
, and
Mathur
,
A.
,
2014
, “
Analysis of a Latent Thermocline Storage System With Encapsulated Phase Change Materials for Concentrating Solar Power
,”
Appl. Energy
,
113
, pp.
1446
1460
.
7.
Felix Regin
,
A.
,
Solanki
,
S.
, and
Saini
,
J.
,
2009
, “
An Analysis of a Packed Bed Latent Heat Thermal Energy Storage System Using PCM Capsules: Numerical Investigation
,”
Renewable Energy
,
34
(
7
), pp.
1765
1773
.
8.
Adebiyi
,
G.
, and
Chenevert
,
D.
,
1996
, “
An Appraisal of One-Dimensional Analytical Models for the Packed Bed Thermal Storage Systems Utilizing Sensible Heat Storage Materials
,”
ASME J. Energy Resour. Technol.
,
118
(
1
), pp.
44
49
.
9.
Jalalzadeh-Azar
,
A.
,
Steele
,
W.
, and
Adebiyi
,
G.
,
1996
, “
Heat Transfer in a High-Temperature Packed Bed Thermal Energy Storage System—Roles of Radiation and Intraparticle Conduction
,”
ASME J. Energy Resour. Technol.
,
118
(
1
), pp.
50
57
.
10.
Wakao
,
N.
, and
Funazkri
,
T.
,
1978
, “
Effect of Fluid Dispersion Coefficients on Particle-to-Fluid Mass Transfer Coefficients in Packed Beds: Correlation of Sherwood Numbers
,”
Chem. Eng. Sci.
,
33
(
10
), pp.
1375
1384
.
11.
Beek
,
J.
,
1962
, “
Design of Packed Catalytic Reactors
,”
Adv. Chem. Eng.
,
3
, pp.
203
271
.
12.
Sparrow
,
E.
,
Patankar
,
S.
, and
Ramadhyani
,
S.
,
1977
, “
Analysis of Melting in the Presence of Natural Convection in the Melt Region
,”
ASME J. Heat Transfer
,
99
(
4
), pp.
520
526
.
13.
Ramsey
,
J.
, and
Sparrow
,
E.
,
1978
, “
Melting and Natural Convection Due to a Vertical Embedded Heater
,”
ASME J. Heat Transfer
,
100
(
2
), pp.
368
370
.
14.
Bareiss
,
M.
, and
Beer
,
H.
,
1980
, “
Influence of Natural Convection on the Melting Process in a Vertical Cylindrical Enclosure
,”
Lett. Heat Mass Transfer
,
7
(5), pp.
329
338
.
15.
Menon
,
A.
,
Weber
,
M.
, and
Mujumdar
,
A.
,
1983
, “
The Dynamics of Energy Storage for Paraffin Wax in Cylindrical Containers
,”
Can. J. Chem. Eng.
,
61
(
5
), pp.
647
653
.
16.
Mendes
,
P. S.
, and
Brasil
,
A. P.
,
1987
, “
Heat Transfer During Melting Around an Isothermal Vertical Cylinder
,”
ASME J. Heat Transfer
,
109
(
4
), pp.
961
964
.
17.
Kemink
,
R.
, and
Sparrow
,
E.
,
1981
, “
Heat Transfer Coefficients for Melting About a Vertical Cylinder With or Without Subcooling and for Open or Closed Containment
,”
Int. J. Heat Mass Transfer
,
24
(
10
), pp.
1699
1710
.
18.
Kalhori
,
B.
, and
Ramadhyani
,
S.
,
1985
, “
Studies on Heat Transfer From a Vertical Cylinder, With or Without Fins, Embedded in a Solid Phase Change Medium
,”
ASME J. Heat Transfer
,
107
(
1
), pp.
44
51
.
19.
Sparrow
,
E.
, and
Broadbent
,
J.
,
1982
, “
Inward Melting in a Vertical Tube Which Allows Free Expansion of the Phase-Change Medium
,”
ASME J. Heat Transfer
,
104
(
2
), pp.
309
315
.
20.
Shmueli
,
H.
,
Ziskind
,
G.
, and
Letan
,
R.
,
2010
, “
Melting in a Vertical Cylindrical Tube: Numerical Investigation and Comparison With Experiments
,”
Int. J. Heat Mass Transfer
,
53
, pp.
4082
4091
.
21.
Hernández-Guerrero
,
A.
,
Aceves
,
S.
, and
Cabrera-Ruiz
,
E.
,
2005
, “
Effect of Cell Geometry on the Freezing and Melting Processes Inside a Thermal Energy Storage Cell
,”
ASME J. Energy Resour. Technol.
,
127
(
2
), pp.
95
102
.
22.
Jones
,
B. J.
,
Sun
,
D.
,
Krishnan
,
S.
, and
Garimella
,
S. V.
,
2006
, “
Experimental and Numerical Study of Melting in a Cylinder
,”
Int. J. Heat Mass Transfer
,
49
, pp.
2724
2738
.
23.
Wang
,
S.
,
Faghri
,
A.
, and
Bergman
,
T. L.
,
2012
, “
Melting in Cylindrical Enclosures: Numerical Modeling and Heat Transfer Correlations
,”
Numer. Heat Transfer, Part A
,
61
, pp.
837
859
.
24.
Sparrow
,
E.
, and
Myrum
,
T.
,
1985
, “
Inclination-Induced Direct-Contact Melting in a Circular Tube
,”
ASME J. Heat Transfer
,
107
(
3
), pp.
533
540
.
25.
Myers
,
P.
,
Goswami
,
D. Y.
, and
Stefanakos
,
E. K.
,
2014
, “
Molten Salt Spectroscopy for Quantification of Radiative Absorption in Novel Metal Chloride-Enhanced Thermal Storage Media
,”
ASME J. Sol. Energy Eng.
,
137
(
4
), p.
041002
.
26.
Touloukian
,
Y.
, and
DeWitt
,
D.
,
1972
, “
Thermophysical Properties of Matter—The TPRC Data Series
,”
Thermal Radiative Properties-Nonmetallic Solids
, Vol.
8
,
Purdue University, Thermophysical Properties Research Center
,
Lafayette, IN
.
27.
Janz
,
G. J.
,
1980
, “
Molten Salts Data as Reference Standards for Density, Surface Tension, Viscosity and Electrical Conductance: KNO3 and NaCl
,”
J. Phys. Chem. Ref. Data
,
9
(
4
), pp.
791
829
.
28.
Chase
,
M.
,
1998
,
NIST-JANAF Thermochemical Tables
, 4th ed., American Institute of Physics, Woodbury, NY.
29.
Johnston
,
H. L.
, and
Hutchison
,
D. A.
,
1942
, “
Density of Sodium Chloride the Atomic Weight of Fluorine by Combination of Crystal Density and X-Ray Data
,”
Phys. Rev.
,
62
, pp.
32
36
.
30.
Chandrasekhar
,
S.
,
1960
,
Radiative Transfer
,
Dover Publications
,
New York
.
31.
Viskanta
,
R.
, and
Mengüc
,
M.
,
1987
, “
Radiation Heat Transfer in Combustion Systems
,”
Prog. Energy Combust. Sci.
,
13
(
2
), pp.
97
160
.
32.
Fiveland
,
W.
,
1984
, “
Discrete-Ordinates Solutions of the Radiative Transport Equation for Rectangular Enclosures
,”
ASME J. Heat Transfer
,
106
(
4
), pp.
699
706
.
33.
Siegel
,
R.
, and
Howell
,
J.
,
2002
,
Thermal Radiation Heat Transfer
,
Taylor & Francis Group
, New York.
34.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Taylor & Francis Group
, New York.
35.
Archibold
,
A. R.
,
Gonzalez-Aguilar
,
J.
,
Rahman
,
M. M.
,
Yogi Goswami
,
D.
,
Romero
,
M.
, and
Stefanakos
,
E. K.
,
2014
, “
The Melting Process of Storage Materials With Relatively High Phase Change Temperatures in Partially Filled Spherical Shells
,”
Appl. Energy
,
116
, pp.
243
252
.
36.
Archibold
,
A. R.
,
Rahman
,
M. M.
,
Goswami
,
D. Y.
, and
Stefanakos
,
E. K.
,
2014
, “
Analysis of Heat Transfer and Fluid Flow During Melting Inside a Spherical Container for Thermal Energy Storage
,”
Appl. Therm. Eng.
,
64
, pp.
396
407
.
37.
O'Neil
,
M. J.
,
2006
,
The Merck Index. An Encyclopedia of Chemicals, Drugs and Biological
,
14th ed.
, Vol.
404
,
Merck, Whitehouse Station
,
NJ
, p.
72
.
You do not currently have access to this content.